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Foreword to the Third Edition

Flow and transport phenomena in porous media arise in many diverse fields of sci-
ence. What makes this field so fascinating is the fact that, in order to truly understand
any given phenomenon in a porous medium, one must account for the complex pore
structure of the medium and its interaction with its fluid content. It is this interaction
that controls the distribution, flow, displacement of one or more fluids, or dispersion
(mixing) of one fluid in or by another fluid. If the fluid is reactive or, for example,
carries ions or particles of various shapes, sizes, and electrical charges, or if it is
under a large enough force that may go under deformation, the pore structure of the
medium may change due to the reaction of the fluid with the pore surface, or the
physicochemical interaction between the particles and the pore surface.

In the early years of studying flow phenomena in porous media, it was almost
always invariably assumed that the heterogeneities were randomly distributed, and
not correlated with each other. Moreover, it was also routinely assumed that the
heterogeneities occur over length scales that are much smaller than the overall lin-
ear size of the system, so that one could always write down well-defined averaged
equations governing any phenomenon based on the classical equations of hydrody-
namics. However, strong evidence, accumulated over decades, suggested that rock
and other types of porous media do not conform to such simplistic assumptions.
They exhibit correlations in their properties that are often present at all the length
scales. The existence of such correlations necessitated the introduction of fractal
distributions that have enabled us to understand how the spatial distributions of the
various properties depend on the length scale of observations and are correlated with
one another.

But, correlations and scale-dependence are only half the story. The other half
is the connectivity. In natural, and often many man-made, porous media the pores
are connected in a complex fashion. Clearly, if the connected pores cannot provide
a sample-spanning path for the fluids to flow, there will be no macroscopic flow.
The same thing happens in large-scale porous media, such as those at field scale. In
such a porous medium the permeabilities of the various regions often follow a broad
distribution. Thus, although parts of the medium may be highly permeable, other
segments may be practically impermeable, or allow very little fluid to go through.
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vi Foreword to the Third Edition

This implies that, for large-scale fluid flow and transport take place in such porous
media, the permeable regions must be connected. The language and the tools for
taking into account the effect of the connectivity are provided by percolation theory.

The book by Hunt, Ewing, and Ghanbarian demonstrates the crucial role that the
connectivity and correlations play in fluid flow in porous media, and how percola-
tion theory may be used fruitfully to address many complex phenomena in porous
media. They bring out the history of the applications of percolation theory to fluid
flow in porous media, a history that is now about 40 years old, and take us through
an amazing collection of problems in porous media, ranging from the character-
ization of their morphology—their pore connectivity, pore geometry, and surface
roughness—to various fluid flow and transport phenomena in their pore space. In
each case, they discuss very convincingly why correlations and power laws that are
characteristics of percolation systems are relevant concepts, and how they are used
to address many problems that might have seemed hopelessly complex to solve just
three or four decades ago. I have always believed that there is hardly any problem in
any disordered porous medium to which percolation theory and the effect of connec-
tivity and correlations are not relevant. The book by Hunt, Ewing, and Ghanbarian
amply confirms my belief. Part of the book represents the important contributions
that the authors themselves have made to this research areas. Other parts reflect the
tremendous progress that has been made over the past few decades.

The field of porous media and in particular the application of percolation theory
to their characterization and modeling and fluid flow therein is still highly active
and thriving. Thus, this book, now in its third edition and more complete than ever
before, is a most welcome addition to this rapidly growing literature, which will be
highly useful to both practitioners of the field, as well as those who wish to become
familiar with the concepts and ideas of percolation theory, and how they are used to
address complex phenomena in porous media.

Muhammad SahimiUniversity of Southern California
Los Angeles, USA



Foreword to the Second Edition

Scientists specialize. In attempting to isolate and understand individual processes,
we risk losing sight of the whole. In essence, most of us study isolated trees rather
than considering the whole forest. This specialization is evident in the science of
porous media: most studies focus on just one or a few specific media, with only
occasional papers addressing a broad class of media. Thus we have specialists in
natural media such as soil, fractured rock, and granular materials, while others focus
on powders, foodstuffs, paper and textiles, ceramics, building materials, and so on.

Percolation theory has been touted as providing a general framework for de-
scribing generalized transport in all types of media. Can this general framework be
applied to a specific class of porous media, with at least as much success as the
accumulated insights of decades of more conventional approaches? If the answer is
yes, then applying percolation theory to transport processes in porous media will
yield great scientific progress.

To illustrate this point, I will briefly consider the porous media that I study. Soils
are a growth medium for plants, and so they support most terrestrial life. More
than six billion people depend on soils for food, for storing and purifying water,
for recycling waste, and for holding us up. This vital layer covering the earth’s
terrestrial surface is fragile. Often less than a meter thick, soils develop slowly but
are easily damaged by accelerated erosion, compaction, tillage, and pollution. Thus
knowledge of soils and their wise management is crucial for sustaining civilization.

But soils are tremendously complex and variable. To describe a transport process
in the soil, one must first define the time scale and the sample size; only then can
the relevant scale(s) of climate, geology, landscape position, vegetation, and man-
agement be considered. The interface between air and land, between vegetable and
mineral, routinely encounters extremes of heat and cold, wet and dry, growth and
decay. Transport is irregular and incessant: heat, water, both as liquid and vapor,
organic and inorganic carbon are constantly on the move.

Conceptual and mathematical models describing these transport processes have
grown increasingly complex. Attempting to describe a greater range of behaviors,
soil scientists have incorporated macropores (wormholes, drying cracks), aggre-
gates, clay flocs and tactoids, and mineral-specific surface chemistry into our mod-
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viii Foreword to the Second Edition

els. While our predictions have (on average) improved, the model parameters have
become more numerous, more difficult to quantify, and arguably less physically de-
fensible. Continuous, volume-averaged functions gloss over important details: the
ubiquitous nonlinear behaviors appear to be driven by discrete events, discrete pore
pathways, and discrete “tipping points.”

When I first met Robert (Toby) Ewing about 15 years ago, I invited him to present
a guest lecture to students in my graduate-level soil physics course, which cov-
ers heat transfer, water flow, chemical transport, and coupled processes. Over the
ensuing years I invited Toby to expand his role in the course. His contributions
grew in quantity and quality, and now we effectively co-teach the course. I focus on
continuous mathematical approaches following Fick, Fourier, Buckingham, Taylor,
Richards, and others. Toby focuses on discrete mathematical approaches for flow
and transport, including network models, percolation theory, and critical path anal-
ysis.

Toby sometimes chides me about being stuck on “old” approaches (playfully us-
ing words like ancient and Neanderthal). I respond that the so-called “old” ways are
tested and trustworthy, while his “new” approaches lack measurement support and
substantive application. However, my defense of the ‘old’ ways has been weakening
since Toby met Allen Hunt about eight years ago. Allen has been at the forefront of
applying percolation theory to transport in (mainly geological) porous media. Allen
and Toby have developed a fruitful collaboration; this book, rich in insights, is one
such fruit. They present examples of percolation theory applied to gas transfer, water
retention and flow, electrical conductivity, heat transfer, and dispersion. Over time I
have come to appreciate the potential power of their work.

From time to time in science some new concept rings a bell, and scientists rush
to engage the new concept. I want to help “ring the bell” for this excellent work of
Hunt and Ewing. In soil science we have focused on empirical descriptions of flow
and transport. Hunt and Ewing offer percolation theory as a foundational description
of how to proceed with a unifying approach. Can percolation theory prove to be a
unifying theory in porous media? Perhaps. The theory is sound, but applications of
the theory to real porous media will require care and wisdom. The theory is unifying,
but like all theories it carries restrictions of simplifying assumptions. Questions of
when and when not, how and how not to apply the theory are valid and important
questions. Hunt and Ewing provide a foundation, and invite others to engage in the
iterative process of applying, evaluating, and advancing the theory.

The foundations of percolation theory presented in this book allow for the study
of isolated trees, but Hunt and Ewing also connect the trees to the forest. I encour-
age the broad range of porous media scientists to study this book. I think the book
provides new ways to consider the processes occurring in porous media, and it will
inspire new thought, analysis, and exploration of flow in porous media.

Curtiss Distinguished Professor of Agriculture
Robert HortonAmes, IA, USA

Eve of Thanksgiving (November) 2008



Foreword to the First Edition

Though a sledge hammer may be wonderful for breaking rock, it is a poor choice
for driving a tack into a picture frame. There is a fundamental, though often subtle,
connection between a tool and the application. When Newton and Leibniz developed
the Calculus they created a tool of unprecedented power. The standard continuum
approach has served admirably in the description of fluid behavior in porous media:
the conservation of mass and linear response to energy gradients fit conveniently,
and are solid foundations upon which to build. But to solve these equations we
must characterize the up-scaled behavior of the medium at the continuum level. The
nearly universal approach has been to conceive the medium as a bundle of capillary
tubes. Some authors made the tubes porous, so they could fill and drain through their
walls; others “broke and reconnected” them so each tube had a range of diameters
along its length. In the end it must be admitted that the marriage of tool (capillary
tube bundles) and task (to derive the constitutive relations for porous media) has
not yet proven to be entirely satisfactory. Lacking in these conceptual models is
a framework to describe the fluid-connected networks within the medium which
evolve as functions of grain size distribution, porosity, saturation, and contact angle.
This is fundamentally a geometry problem: how to concisely describe the particular
nature of this evolving, sparse, dendritic, space-filling network.

Recognizing this basic problem, the community flocked to the fractal models as
they became better understood in the 1990s. But fractals alone were not enough,
as the real problem was to understand not the geometry of the medium, but the
geometry of the fluids within the medium, and moreover, to correctly identify the
geometry of the locations that control the flow.

I met Allen Hunt in the late 1990s, and over coffee he described his ideas about
critical path analysis for the development of constitutive relationships for unsatu-
rated conductivity. I was immediately sold: it was transparent that the geometric
model (with the equally important framework for mathematical analysis) was ide-
ally suited to the problem at hand. Since resistance to flow is a function of the fourth
power of the pore aperture, clearly the key was to systematize the determination of
the “weak link” to compute overall resistance to flow. Paths that had breaks were
irrelevant; and paths that contained very small pores provided negligible contribu-
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x Foreword to the First Edition

tion. The permeability should be proportional to the fourth power of the radius of the
smallest pore in the connected path which has the largest small pore. Read that sen-
tence twice: we are looking for the path of least resistance, and that paths resistance
will be a function of the smallest pore in that path. Allen had the tool to identify
this path as a function of fluid content. A very useful, appropriately sized, hammer
had arrived for our nail. Over the following years Allens work showed the power
of using the right tool: he could explain the relationship between the geometry of
the medium and liquid content versus permeability, residual fluid content, electrical
resistance, diffusion of solutes, and even the thorny issues of the scale of a represen-
tative elementary unit. Critical path analysis is not a panacea, but due to the focus on
the controlling geometric features, it provides a remarkably concise parameteriza-
tion of fluid–medium relationships based on physically measurable properties that
accurately predict many of the basic ensemble properties.

A fundamental problem in having these results be broadly understood and
adopted is sociological. Consider how much time we spend learning calculus to
solve the occasional differential equation. Critical path analysis requires calculus,
but also understanding of the mathematics of fractals, and the geometric strategy of
percolation theory. When Allen started his remarkably productive march into flow
through porous media he deftly employed these tools that none of our community
had mastered. There is a natural inertia to any discipline since re-tooling requires
major investments of time. From this perspective I have long encouraged Allen to
help the community make use of this essential set of tools by providing a primer
on their application to flow though porous media. In this book Allen has once again
moved forward strategically, and with great energy. He has provided an accessi-
ble tutorial that not only provides the bridge for the hydrologist to these new tools,
but also the physicist a window into the specialized considerations of flow through
natural porous media.

Learning new mathematical constructs is much like learning a new language.
There is a great deal of investment, and the early effort has few rewards. Ultimately,
however, without language there is no communication. Without mathematics, there
is no quantitative prediction. If understanding the behavior of liquids in porous me-
dia is central to your work, I urge you to make the investment in learning this mate-
rial. By way of this book Allen provides a direct and efficient avenue in this venture.
Your investment will be well beyond repaid.

John SelkerCorvallis, Oregon
April, 2005



Preface to the Third Edition

The first edition of “Percolation theory for flow in porous media” was short and
focused. The point of the book was primarily to introduce readers to a suite of
techniques, by which the author believed essentially all problems of flow, conduc-
tion, and diffusion in porous media could be solved, although it was also admit-
ted that many problems that were in principle soluble by these techniques, were
as yet unsolved. The strategy that was presented integrated critical path analysis
with cluster statistics of percolation and scaling relationships. In the second edi-
tion we determined that some of the problems that we had left out could also be
addressed in the general framework that was put forth, the most notable addition
being the dispersion of solutes during advective transport. At the same time it was
becoming clear to the authors that there was an entire suite of problems of inter-
est to a number of different research communities that we had not even touched
on, even though we had tried to expand the range of problems addressed. In this
third edition we continue in the same vein as in the second, namely in a demon-
stration of the widening range of problems that we have tackled within this frame-
work for solving problems. The principle motivation remains the same, however,
to show that this particular combination of techniques from percolation theory can
unify solutions of a wide range of problems. Although this preface therefore need
not be long, we do wish to point out that we have greatly expanded the portions
involving experimental verification of results, especially in the cases of air perme-
ability, hydraulic conductivity, diffusion, and dispersion. And we have shown that
our results for the spatio-temporal scaling of solute velocities give excellent pre-
dictions of the scaling of surface reaction rates over ten orders of magnitude of
time scales. This, frankly unexpected, result means that the theoretical framework
for dispersion of non-reactive solutes introduced in the previous edition, has rel-
evance far beyond what was originally imagined, since the chemical weathering
of silicate minerals in the earth’s crust is among the reactions whose scaling be-
havior is described. And silicate weathering has an important role in many global
phenomena, such as soil production and surface denudation rates, but most notably
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xii Preface to the Third Edition

for the global carbon cycle, with its implications for climate change and extinc-
tions.

Allen Hunt
Robert Ewing

Behzad Ghanbarian

October 2013



Preface to the Second Edition

Why would we wish to start a 2nd edition of “Percolation Theory for Flow in Porous
Media” only two years after the first one was finished? There are essentially three
reasons:

(1) Reviews in the soil physics community have pointed out that the introductory
material on percolation theory could have been more accessible. Our additional ex-
perience in teaching this material led us to believe that we could improve this aspect
of the book. In the context of rewriting the first chapter, however, we also expanded
the discussion of Bethe lattices and their relevance for “classical” exponents of per-
colation theory, thus giving more of a basis for the discussion of the relevance of
hyperscaling. This addition, though it will not tend to make the book more acces-
sible to hydrologists, was useful in making it a more complete reference, and these
sections have been marked as being possible to omit in a first reading. It also forced
a division of the first chapter into two. We hope that physicists without a background
in percolation theory will now also find the introductory material somewhat more
satisfactory.

(2) We have done considerable further work on problems of electrical conductiv-
ity, thermal conductivity, and electromechanical coupling. The electrical conductiv-
ity may in more complex media than those addressed in the first edition lead to the
relevance of nonuniversal exponents of percolation theory, while the thermal con-
ductivity may be strongly affected by complex structures such as capillary bridges
or pendular rings between grains. Neither of these subjects in morphology was dis-
cussed in detail in the first edition.

Our additional research into the saturation dependence of the electrical conduc-
tivity appeared to confirm the relevance of universal scaling to a much wider range
of materials than we knew about at the time of the first edition. However, a related
subject long considered important in petroleum engineering is diagenesis, which
was handled in some detail in Sahimi’s 1993 review. It is possible to make models of
rock formation in which the connectivity of the pore space scarcely changes, while
the width of the pores diminishes rapidly with diminishing porosity. Such models
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xiv Preface to the Second Edition

allow, at least in principle, the possibility of nonuniversal exponents of percolation
theory.

The reason that pendular structures could be relevant, especially to the thermal
conductivity of geological porous media, is that the solid fraction generally has a
higher thermal conductivity than the fluid phase (e.g., air or water), while the ther-
mal resistance between neighboring grains may be quite high. Thus, small amounts
of fluid at these junctions—pendular structures—may produce a rather large in-
crease in the thermal conductivity, and this increase may have nothing to do with
percolation theory as such, since the topology of the connected network might not
initially change with increasing fluid content, although critical path analysis may
still be useful for this problem. The large increase in material covered in the original
Chap. 4 also led to its division into the current Chaps. 5 and 6.

(3) We have recently addressed the problem of dispersion in porous media, which
brings up the relevance of some additional topological aspects of percolation the-
ory, in particular, the relationship of the tortuosity of the backbone cluster to the
distribution of passage times. Because this was not addressed in the first edition, the
introductory chapters mentioned the topic only briefly. As a consequence the pref-
ace to the first edition is now more dated as dispersion was implied to be a problem
that could be omitted. In fact, inclusion of dispersion into the second edition has
made a significant advance in the unity of the theoretical approach here.

We also bring in an additional problem (Sect. 11.4) addressing the question of
how to generate a realistic prediction in horizontal and vertical K distributions for a
topical waste management problem, which uses output parameters from a smallscale
upscaling to generate appropriate input parameters in a large-scale upscaling. We
hope it is useful to see how difficult practical problems in applying percolation the-
ory at multiple scales might be managed.

In order to give the book a wider relevance, it is useful to embed the discussions
of the relevance of universal exponents in a wider context. This is accomplished by
looking at a wider range of models of porous media, a wider range of properties, and
a wider range of experiments. As a consequence, the introductory review chapters
needed to be rewritten in order to accommodate a more widely applicable theory.

Finally, it has been noted that solutions to the problems are not provided. It was
our intention, except in the introductory chapters, to suggest mostly problems whose
solutions could be published, so these problems have not yet been attempted.

Besides the people acknowledged in the first edition, one of us would like to
thank the staff of the library at Wright State University.



Preface to the First Edition

The focus of research in porous media is largely on phenomena. How do you explain
fingering? What causes preferential flow? What “causes” the scale effect on the hy-
draulic conductivity? Why can the incorporation of 5% of hydrophobic particles into
soil make the soil water repellent? Where do long tails in dispersion come from?
These are merely a few examples of a very long list of questions asked. The ap-
proach to “solving” problems is frequently to (1) take standard differential equations
such as the advection-diffusion equation for solute transport, or Richards’ equation
for water transport; (2) substitute results for what are called constitutive relations
such as the hydraulic conductivity, K , molecular diffusion constants, or air perme-
ability as functions of saturation, and pressure-saturation curves, including hystere-
sis, etc.; (3) apply various models for the variability and the spatial correlations of
these quantities at some scale; and (4) solve the differential equations numerically
according to prescribed initial and/or boundary conditions. In spite of continuing im-
provement in numerical results, this avenue of research has not led to the hoped-for
increase in understanding. In fact there has been considerable speculation regarding
the reliability of the fundamental differential equations (with some preferring frac-
tional derivatives in the advection-diffusion equation, and some authors questioning
the validity of Richards’ equation) while others have doubted whether the hydraulic
conductivity can be defined at different scales.

Although other quite different approaches have thus been taken, let us consider
these “constitutive” relations. The constitutive relationships used traditionally are
often preferred because (1) they generate well-behaved functions and make numer-
ical treatments easier; (2) they are flexible. This kind of rationale for using a par-
ticular input to a differential equation is not likely to yield the most informative
solution. The most serious problem associated with traditional constitutive relations
is that researchers use such concepts as connectivity and tortuosity (defined in perco-
lation theory) as means to adjust theory to experimental results. But the appropriate
spatial “averaging” scheme is inextricably connected to the evaluation of connec-
tivity. In fact, when percolation theory is used in the form of critical path analysis,
it is not the spatial “average” of flow properties which is relevant, but the most re-
sistive elements on the most conductive paths, i.e. the dominant resistances on the
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xvi Preface to the First Edition

paths of least resistance. An additional problem is that usual constitutive relations
often cover simultaneous moisture regimes in which the represented physics is not
equilibrium, and thus time-dependent, as well as those moisture regimes where the
dominant physics is equilibrium, so that they must be overprescribed (while still
not describing temporal effects). Finally, there has been no progress in making the
distributions and spatial correlations of, e.g. K , consistent with its values at the core
scale, because there is no systematic treatment of the connectivity of the optimally
conducting regions of the system. This book shows a framework that can be used
to develop a self-consistent and accurate approach to predict these constitutive re-
lationships, their variability, spatial correlations and size dependences, allowing use
of standard differential equations in their continuum framework (and, it is hoped, at
all spatial scales).

Although applications of percolation theory have been reviewed in the porous
media communities (e.g. Sahimi, 1993; Sahimi and Yortsos, 1990) (in fact, percola-
tion theory was invented for treating flow in porous media, Broadbent and Hammer-
sley, 1957) it tends to be regarded as of limited applicability to real systems. This is
partly a result of these summaries themselves, which state for example that “Results
from percolation theory are based on systems near the percolation threshold and the
proximity of real porous rocks to the threshold and the validity of the critical rela-
tionships away from the threshold are matters of question,” (Berkowitz and Balberg,
1993). However, it is well-known that percolation theory provides the most accurate
theoretical results for conduction also, in strongly disordered systems far above the
percolation threshold (using critical path analysis). The novelty in this course is the
combined use of both scaling and critical path applications of percolation theory to
realistic models of porous media; using this combination it is possible to address
porous media under general conditions, whether near the percolation threshold or
not.

This book will show how to use percolation theory and critical path analysis to
find a consistent and accurate description of the saturation dependence of basic flow
properties (hydraulic conductivity, air permeability), the electrical conductivity, so-
lute and gas diffusion, as well as the pressure-saturation relationships, including
hysteresis and non-equilibrium effects. Using such constitutive relationships, re-
sults of individual experiments can be predicted and more complex phenomena can
be understood. Within the framework of the cluster statistics of percolation theory it
is shown how to calculate the distributions and correlations of K . Using such tech-
niques it becomes easy to understand some of the phenomena listed above, such as
the “scale” effect on K , as well.

This work does not exist in a vacuum. In the 1980s physicists and petroleum en-
gineers addressed basic problems by searching for examples of scaling that could be
explained by percolation theory, such as Archie’s law (Archie, 1942) for the electri-
cal conductivity, or invasion percolation for wetting front behavior, hysteresis, etc.
or by using the new fractal models for porous media. The impetus for further re-
search along these lines has dwindled, however, and even the basic understanding
of hysteresis in wetting and drainage developed in the 1980s is lacking today, at
least if one inquires into the usual literature. In addition, the summaries of the work
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done during that time suggest that the percolation theoretical treatments are not flex-
ible enough for Archie’s law (predict universal exponents), or rely on non-universal
exponents from continuum percolation theory without a verifiable way to link those
exponents with the medium and make specific predictions. An identifiable problem
has been the inability of researchers to separate connectivity effects from poresize
effects. This limitation is addressed here by applying percolation scaling and criti-
cal path analysis simultaneously. While there may have been additional problems in
the literature of the 1980s (further discussed here in the Chapter on hysteresis), it is
still not clear to me why this (to me fruitful) line of research was largely abandoned
in the 1990s. This book represents an attempt to get percolation theory for porous
media back “on track.”

It is interesting that many topics dealt with as a matter of course by hydrologists,
but in a rather inexact manner, are explicitly treated in percolation theory. Some
examples are:

1. upscaling the hydraulic conductivity = calculating the conductivity from micro-
scopic variability,

2. air entrapment = lack of percolation of the air phase,
3. residual water, oil residuals = critical moisture content for percolation, sum of

cluster numbers,
4. grain supported medium = percolation of the solid phase;
5. Representative Elementary Volume = the cube of the correlation length of per-

colation theory,
6. tortuosity = tortuosity,
7. flow channeling = critical path.

These concepts and quantities are not, in general, treatable as optimization func-
tions or parameters in percolation theory because their dependences are prescribed.
Note that in a rigorous perspective for disordered systems, however, one does not
“upscale” K . The difficulty here is already contained within the language; what is
important are the optimal conducting paths, not the conductivities of certain regions
of space. The conductivity of the system as a whole is written in terms of the rate-
limiting conductances on the optimal paths and the frequency of occurrence of such
paths. Defining the conductivity of the system as a whole in terms of the conductiv-
ities of its components is already a tacit assumption of homogeneous transport. Fur-
ther, some elementary rigorous results of percolation theory are profoundly relevant
to understanding flow in porous media. In two-dimensional systems it is not possi-
ble for even two phases to percolate simultaneously (in a grainsupported medium
there is no flow or diffusion!), while in three dimensions a number of phases can
percolate simultaneously. As percolation thresholds are approached, such physical
quantities as the correlation length diverge, and these divergences cause systematic
dependences of flow and transport properties on system size that can only be ana-
lyzed through finite-size scaling. Thus it seems unlikely that treatments not based
on percolation theory can be logically generalized from 2D to 3D.

I should mention that a book with a similar title, “Percolation Models for Trans-
port in Porous Media,” by Selyakov and Kadet (1996) also noted that percolation
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theory could have relevance further from the percolation threshold, but overlooked
the existing literature on critical path analysis, and never mentioned fractal models
of the media, thereby missing the importance of continuum percolation as well. As
a consequence, these authors did not advance in the same direction as this present
course.

The organization of this book is as follows. The purpose of Chap. 1 is to provide
the kind of introduction to percolation theory for hydrologists which (1) gives all
the necessary basic results to solve the problems presented later; and which (2) with
some effort on the part of the reader, can lead to a relatively solid foundation in
understanding of the theory. The purpose of Chap. 2 is to give physicists an intro-
duction to the hydrological science literature, terminology, experiments and asso-
ciated uncertainties, and finally at least a summary of the general understanding of
the community. This general understanding should not be neglected as, even in the
absence of quantitative theories, some important concepts have been developed and
tested. Thus these lecture notes are intended to bridge the gap between practicing
hydrologists and applied physicists, as well as demonstrate the possibilities to solve
additional problems, using summaries of the background material in the first two
chapters. Subsequent chapters give examples of critical path analysis for concrete
system models Chap. 3; treat the “constitutive relationships for unsaturated flow,”
including a derivation of Archie’s law Chap. 4; hysteresis, non-equilibrium proper-
ties and the critical volume fraction for percolation Chap. 5; applications of dimen-
sional analysis and apparent scale effects on K Chap. 6; spatial correlations and
the variability of the hydraulic conductivity Chap. 7; and multiscale heterogeneity
Chap. 8.

I wish to thank several people for their help in my education in hydrology and
soil physics, in particular: Todd Skaggs, whose simulation results have appeared
in previous articles and also in this book; John Selker, who showed me the useful-
ness of the Rieu and Sposito model for the pore space; Glendon Gee, who helped
me understand experimental conditions and obtain data from the Hanford site; Eu-
gene Freeman for providing additional Hanford site data; Bill Herkelrath, again for
data; Toby Ewing, whose simulations for diffusion were invaluable; Tim Ellsworth
for showing me the relevance of the experiments of Per Moldrup; Per Moldrup for
giving me permission to republish his figures; Max Hu for providing me with his
diffusion data; and Sally Logsdon for her data on soil structure; Alfred Huebler for
giving me a forum among physicists to discuss these ideas. I also thank my wife,
Beatrix Karthaus-Hunt, for her support.

Allen G. HuntDayton
April, 2005
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Chapter 1
Percolation Theory: Topology and Structure

1.1 What Is Percolation?

Percolation theory describes emergent properties related to the connectivity of large
numbers of objects. These objects typically have some spatial extent, and their spa-
tial relationships are relevant and statistically prescribed. Percolation theory is thus
related to graph (e.g. [12]) and network (e.g. [14]) theories. All of these exist within
the intersection of probability theory and topology. For the present purpose, the chief
relevance of percolation theory is its ability to deliver global properties from local
specifications. Here the global properties sought describe flow, conduction and other
transport properties of porous media. The relationships between local and global
properties are not trivial: sometimes the global properties relate to universal topo-
logical properties, and sometimes to system-dependent properties.

In percolation theory the topology is customarily referenced to some d-
dimensional spatial structure with an existence independent of the probabilistic
characteristics of the theory. Examples of such structures include regular grids
(known in solid state physics as lattices), consisting of nodes (sites) connected by
bonds. In porous media the pore space (filled, e.g., with water or air) corresponds to
a random lattice, viewed already in the 1950s [17] as a network. The typical twist
from percolation theory is to take such a known structure with simple topology,
characterized by as few as one or two parameters, and make the presence of, e.g.,
bonds a probabilistic affair, which generates quite complex topologies.

Percolation theory comes in three basic varieties: bond, site, and continuum, with
the first two versions linked by name to the grids mentioned above. We will con-
sider all three varieties. Percolation theory also has some interesting and potentially
relevant variants, including bootstrap percolation (an early reference is [9]), gradi-
ent percolation [35], and invasion percolation [10, 30, 52]. Bootstrap and gradient
percolation are ignored here, while invasion percolation theory is applied in a few
places. Invasion percolation was developed in the context of wetting and drying of
porous media, in order to describe phenomena related to, e.g., wetting fronts, where
the wetting fluid enters the medium from one side. It should become clear that a
great deal of unification was already provided by the basic percolation theory as
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2 1 Percolation Theory: Topology and Structure

formulated by Flory [19] and Broadbent and Hammersley [7]. Nevertheless, this
book describes some new combinations of uses of percolation theory. In order to
understand these combinations it is important to understand clearly the basic ap-
plications of percolation theory, particularly to conduction. These applications have
some basis in the topology of the system being examined. Our introduction is made
more accessible by considering specific physical examples.

A system is said to be at percolation, or to percolate, when a sufficient frac-
tion of the entities in question (sites, bonds, etc.) is connected locally that a global
connection emerges. This global connection is a continuous string of locally con-
nected entities which is unbounded in size except as may result from limitations of
a finite-sized system. As is often the case in mathematics, percolation theory has
some surprises. Here the simplest result, at least conceptually, is that precisely one
global connection develops [2, 22, 24] exactly at a specific fraction, pc, of local
connections known as the critical fraction. Such a simple result is also profound,
and decades elapsed before it was proven.

1.2 Some Examples

A simple bond percolation problem can be represented by a window screen which
maps out a square grid (lattice). Imagine cutting at random a fraction p of the ele-
ments of this grid. At some critical fraction p ≡ pc (which will turn out to be 0.5),
the window screen will lose its connectedness and fall apart. Percolation theory ad-
dresses directly the question, “at what fraction of cut bonds does the screen fall
apart?” (i.e., what is pc?), and related questions such as, “what is the largest hole in
the screen if the cut fraction p is less than pc,” and “what is the structure of such
holes?”. Percolation theory also readily provides the electrical conductivity of such
an incompletely connected network of (conducting) bonds, or what the diffusion
coefficient of a network of the same structure would be if the elements were water-
filled tubes rather than wires. Answers to the latter questions are given in terms of p,
pc, and the conductivity or diffusivity of the individual bonds.

A simple site percolation problem can be represented by the random emplace-
ment of equal-sized metallic and plastic spheres in a large container. If two metal
spheres touch each other, a current can pass from one to the other. Here the relevant
percolation variable is the fraction, p, of spheres that is conducting. If the fraction
of metallic spheres exceeds a critical value, a continuous conducting pathway will
be formed. The larger the fraction of metallic spheres, the better connected the path
will be and the greater the electrical conductivity of the system. Percolation theory
generates the electrical conductivity as a function of the fraction of the spheres made
of metal. Site and bond percolation problems can be defined on either regular grids,
like a square-lattice window screen, or irregular grids like a random sphere pack.
They can also be defined on tree structures with constant branching ratios known as
Bethe lattices.
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A continuum percolation problem receiving attention already in the 1970’s is a
network of sintered glass and metallic particles. The glass particles may have differ-
ent sizes and shapes from the metallic particles (which are typically smaller), while
the sintering process tends to change the shapes of the particles, producing a net
flow of material into the pore space. The irregularity of the particle shapes can thus
be contrasted with the regular geometry of the site percolation problem described
above. Such networks have relevance in the xerox industry. In the above continuum
percolation problem the relevant percolation variable becomes the volume fraction,
p, taken up by the metallic particles. If the detailed structure is known, percolation
theory can account for some aspects of the electrical conductivity of these systems
as well [4, 25, 31]. Other real systems whose electrical properties can be treated in
terms of continuum percolation include piezoelectric ceramics [20, 43]. The con-
tinuum percolation problem that we will be most interested in here is that of water
flowing in variably saturated porous media. Porous media are often far from the
percolation threshold whereas piezoelectric ceramics are extremely close to it.

Across these applications of percolation theory, we may see the values of pc vary
widely from system to system. However, the same relationships are still used to de-
termine, e.g., the size of the largest hole in the screen, or the electrical conductivity
as a function of p − pc, where p is the fraction of conducting portions, and pc
its critical value for percolation. Relationships that are functions of the difference
p − pc are normally (with isolated exceptions) termed “universal” [45, 47]. Here
universal means that the property is independent of the details of the system and de-
pends only on its dimensionality, d . We wish to demonstrate how percolation theory
can be used to solve practical problems relating to transport in porous media.

It had earlier been hoped that the universal behavior exhibited by most models
near the percolation threshold could be used to guide understanding of real physical
systems across the entire range of connectivities (see, for example, [6, 36, 37]). But
as has been frequently pointed out, it is not clear how close real systems are to
the percolation threshold. Thus it is important to emphasize at the outset that this
book will explain the use of percolation theory to calculate transport properties not
merely near the percolation transition, but also far from it. Far from the percolation
transition it is frequently non-universal aspects of percolation theory, i.e. the value
of pc and the statistical characteristics of the medium, which control transport; near
the percolation threshold it is the universal aspects that dominate. This perspective
will be seen to be far more useful than a restriction to either case by itself: it allows
calculation of all the transport properties of porous media, as well as their variability
and the structure of their spatial correlations.

This first chapter is devoted to the development of basic methods and concepts
from percolation theory that refer to the structure of topology of percolation. The
material here is drawn from many sources, but most importantly from Stauffer [45],
Sahimi [36], Stauffer and Aharony [47], and Bunde and Havlin [8]. Some concepts
important for the unification of percolation theory will be treated in some depth for
the benefit of those readers with a physics background but without detailed experi-
ence in percolation theory. These will be pointed out and can be skipped in an initial
reading. The second chapter provides an introduction to transport-related aspects of
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percolation theory. The third chapter will serve as an introduction to porous media.
Subsequent chapters will detail the applications.

1.3 Qualitative Descriptions

Consider a square grid of points, and draw line segments between nearest neighbor
points “at random.” For very small values of p these segments will only connect
pairs of nearest neighbor sites. As p increases more pairs will connect, and gradu-
ally clusters of interconnected sites will appear. As p nears pc many of these clusters
will become large, with complex internal structure. What is the occurrence of such
clusters as a function of p and their size? We would also like to quantify the struc-
ture of the clusters. This structure has been described using various quantities, such
as perimeter, density, mass (i.e., number of sites), “chemical path” length, and rami-
fication. The perimeter (the number of sites in the cluster with neighboring sites not
in the cluster) has two contributions: one is proportional to the volume [26], while
the second, similar to surface area, is proportional to the volume to the 1 − 1/d

power, where d is the Euclidean dimension [45]. The radius of a large cluster is not
given in terms of its volume by the usual relationships valid for Euclidean objects.
In fact large clusters at, or near, the percolation threshold are fractal objects, without
scale reference except in the small scale limit when the scale of the grid becomes
visible.

As p reaches pc the largest interconnected cluster just reaches infinite size. For
p greater than but still close to pc, most of the sites on the infinite connected clus-
ter are located on what are called “dead ends.” Dead ends are connected to the rest
of the infinite cluster by only one bond. If current were to flow across the system
through the infinite cluster, these dead ends would carry no current. If the dead
ends are “pruned” from the cluster, what remains is called the “backbone,” the por-
tion of the infinite cluster that carries current. The backbone has a large number of
loops, making it a multiply-connected object. The backbone also has “red” bonds,
for which no alternate path exists. If a red bond is cut, the current is interrupted. Red
bonds are associated with the largest drops in the potential field, which is why they
are designated “red” or “hot”. If the length scale viewed is not too large, then large
finite clusters just below percolation have the same appearance as the infinite cluster
just above percolation. Figure 1.1 shows the “infinite” cluster for p > pc and bond
percolation on a square lattice, and Fig. 1.2 shows its backbone.

The backbone cluster itself has been described using the terms “links,” “nodes,”
and “blobs.” A pictorial definition of these terms is given in Fig. 1.3. The character-
istic separation of nodes, or the length of a link, will be equivalent to the correlation
length, defined in Eq. (1.1) below. A heuristic derivation of the exponent for the
vanishing of the conductivity [41] is based on the conceptualization of the infinite
cluster depicted in Fig. 1.3. Note that considerable work on non-linear effects on
the electrical conductivity, as well as the usefulness of effective-medium theoretical
descriptions is based on this kind of a pictorial concept. This literature will not be
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Fig. 1.1 A finite size sample
of bond percolation on a
square lattice above the
percolation threshold

Fig. 1.2 The same system
and realization of Fig. 1.1, but
for which the dead ends have
been removed from the
infinite cluster to form the
“backbone” cluster. Note the
existence of many closed
loops (figure from Todd
Skaggs, unpublished)

discussed here, and if interested, the reader should consult Shklovskii and Efros [40]
or Pollak [33] and the references therein.

The clusters, being fractal objects, have many properties which are best char-
acterized using a fractal dimensionality. While the multiplicity of consequent frac-
tal dimensionalities can be confusing, we will concentrate our attention on three of
these: (1) the fractal dimension, df, associated with the mass distribution of the clus-
ter, (2) the fractal dimension associated with the mass distribution of the backbone,
Db, and (3) the fractal dimension associated with the optimal path length along
the backbone, Dmin. The first is relevant to any understanding of the occurrence of
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Fig. 1.3 Schematic of a
section of the backbone.
Links and nodes have
conventional meanings from,
e.g., Kirchoff’s network
equations, while blobs are
cycles or loops, or collections
thereof. Nodes are hatched
circles with borders. Blobs
are hatched circles without
borders. Links are the lines
connecting nodes. Gray lines
in the upper left hole
represent dangling ends. The
average link length, χ , is also
the average hole size

clusters as a function of cluster size, while the second, and perhaps the third, have
relevance to calculations of dispersion through descriptions of solute transport along
paths of constant flux through porous media.

1.4 What Are the Basic Variables?

The most fundamental variable is p, which for the bond percolation problem is
defined to be the fraction of (cut) bonds in the above screen problem, or, equivalently
the fraction of bonds emplaced on a background without bonds. In site percolation
p normally stands for the fraction of, e.g., the metallic balls mentioned above. It can
also stand for the number of lattice (grid) sites marked by some special color, and
which “connect” if they happen to be nearest neighbors. (In two dimensions there is
little point in distinguishing multiple colors because at most one type of site, bond or
continuum can percolate at one time, but in higher dimensions more than one color
can percolate simultaneously.) In continuum percolation, p can stand for a fractional
volume, for example the water content of a soil. The most important value of p

is pc, the critical value at which percolation occurs. In an infinitely large system,
pc is precisely defined: larger values of p guarantee “percolation,” the existence of
an infinitely large cluster of interconnected sites (bonds or volume), while smaller
values of p guarantee that percolation does not occur. For a given finite sized system
this transition may occur at a value of p somewhat greater than or less than pc. Some
authors use this spread in pc values for finite sized systems as a starting point to
discuss finite-size effects on percolation properties; here we use the cluster statistics
of percolation as a basis for treating such finite-size effects. Percolation theory has
sufficient redundancy to make either approach suitable.

Other basic variables are all functions of the difference p − pc. P∞ is defined
to be the fraction of active bonds (or sites) connected to the infinite cluster (if an
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infinite cluster exists, i.e., for p > pc). χ , known as the correlation length, gives
the typical linear extent of the largest cluster for p < pc, and the largest hole for
p > pc. ns is defined to be the volume concentration of clusters of sites or bonds
with s interconnected elements, and is a function of s and of the difference p − pc.
How to obtain such quantities, and how to use them to calculate realistic and often
very accurate values of transport coefficients of disordered porous media, is the
point of this book.

1.5 What Is Scale Invariance and why Is It so Important?

A core concept of percolation theory, central to much of its theoretical develop-
ment, is that the correlation length, χ , diverges (goes to infinity) in the limit p → pc.
While, for p �= pc χ defines a relevant physical scale, this scale disappears precisely
at p = pc. The lack of any length scale, known as scale invariance, also implies
the relevance of fractal analysis, or self-similarity. Even for p �= pc, if a percola-
tion system is viewed at length scales less than χ it appears fractal. Only at length
scales greater than χ does the geometry become Euclidean [46]. Another physical
meaning of a divergent correlation length is that at p = pc, the largest cluster of
interconnected bonds, sites, or volume, just reaches infinite size. Thus it can be said
that if one examines the system at length scales smaller than the largest self-similar
structure, the medium appears to be self-similar. At the percolation threshold, the
largest self-similar structure reaches infinite size, and the self-similar appearance of
the medium extends to infinite length scales. Of course no physical medium on the
earth can precisely obey such a condition.

Before we define the correlation length, we define first the correlation function
g(r) as the mean number of sites at a Euclidean distance r from some arbitrary
occupied site, that are also occupied and on the same cluster as that arbitrary site.
The sum of g(r) over all values of r will thus yield the total cluster mass. This
makes g(r), suitably normalized, a measure of cluster density. Because of the ex-
ceedingly complex structure of clusters in higher dimensions, g(r) is cumbersome
to construct, except on Bethe lattices and one-dimensional systems.

The correlation length, χ , may be defined as

χ2 =
∑∞

r=1 r2g(r)
∑∞

r=1 g(r)
(1.1)

Thus the correlation length is a root-mean-square (rms) measure of the size of the fi-
nite clusters. While Bunde and Havlin [8] take the lower limit of the sum in Eq. (1.1)
to be r = 1, Stauffer and Aharony [47, Sect. 2.2] use r = 0, a distinction which
makes no difference in the behavior of any calculated property in the vicinity of the
percolation threshold.

Starting from p > pc, the divergence of the correlation length implies that the
largest hole in the infinite connected cluster just reaches infinite size and there is
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symmetry between p > pc and p < pc. This symmetry is perfect only in two di-
mensions, where only one phase, or class, of sites or bonds can percolate simulta-
neously. The divergence of the correlation length implies that right at percolation
there is no finite length scale left in the problem. In reference to the qualitative dis-
cussion of Sect. 1.3, this scale invariance shows up also in the shapes and internal
structure of the clusters, and is represented through quantities that describe fractal
dimensionalities.

What does the lack of a finite length scale at the percolation threshold imply?
It requires the use of functions of powers. Powers may appear to have a scale, i.e.,
under some circumstances the relationship of a conductivity to a length scale, x,
can, simply by dimensional analysis, be shown to have a form such as,

K = K0

(
x

x0

)−(d−1)

(1.2)

where the choice of the power −(d − 1) is not intended to be anything beyond il-
lustrative, K is a conductivity, K0 is a particular value of the conductivity, x is a
length, and x0 is a particular value of x. In contrast to an exponential function, x0 in
this case need not identify a particular “scale,” though if used in a judicious fashion
it may imply a boundary of the validity of the scale invariance (the existence of a
lower limit of the validity of scale-invariance in site and bond percolation problems
is clearly required by the finite dimensions of the underlying lattice). On the other
hand an exponential function, K = K0 exp(−x/x0), must also have an argument
x/x0. But the particular value of x0 has completely different consequences in the
two equations. For example, as long as x is within a range of lengths for which the
power law is valid (Eq. (1.2)), for d = 3, doubling the system size will always de-
crease the conductivity by a factor of four, regardless of the actual values of x0 or
K0. In the case of the exponential function, the conductivity obtained by doubling
the system size will depend on the conductivity of the initial system, and thus on
the size ratio of the larger system to x0; this is in no sense a scale-independent re-
lationship. Notice that in physical systems a power law may have upper and lower
boundaries. For example, physical objects with fractal characteristics are, strictly
speaking, truncated fractals: their fractal nature does not extend to sub-atomic or
galactic length scales. We may therefore give their power law description an upper
and lower bound, but they are still scale-invariant within those bounds. More gen-
erally, incorporating a particular scale in a power law equation may provide useful
information about one of its bounds without negating its scale invariance within the
range under consideration.

The above argument implies that the correlation length must therefore be a power
function. The argument of the correlation length is known to be the difference, p −
pc, making it simplest to describe the correlation length as in Eq. (1.3),

χ ∝ (p − pc)
−ν (1.3)

The negative exponent, −ν, allows χ to diverge at p = pc. The term “universal-
ity” can now be understood in a practical way: the form of Eq. (1.3) is the same in
all systems and the exponent ν depends only on the dimensionality of the system.
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The scale invariance—lack of a length scale—also implies the relevance of fractal
analysis, or self-similarity. Self-similarity is especially important because it allows
the application of the mathematical techniques of renormalization. Application of
renormalization will permit us to estimate some important quantities of percolation
theory, and to employ analogies from the existing framework of the theory of criti-
cal phenomena. Renormalization and critical phenomena are treated in many books
(e.g., [5, 8, 11, 13, 27, 42, 44]). The books by Bunde and Havlin [8] and Sornette
[42] address percolation theory, while Sornette [42] specifically links discussion of
percolation with critical phenomena, making these references most pertinent here.

In disordered systems that are far above the percolation threshold, it is always
possible to define some variable, describing a subset of the system, which is at the
percolation threshold. If this variable is defined in such a way as to relate to local
transport coefficients, then it will be possible to identify the chief contribution to
the transport properties of the medium. Then one has the interesting result that for
disordered systems of nearly any structure transport is dominated by connecting
paths near the percolation threshold, and the fractal characteristics of percolation
can be relevant to transport even in media, which seem to have no resemblance to
fractals. The basis for this application, called critical path analysis, is described in
the last section of this chapter. Many applications of percolation theory to disordered
systems (e.g., [8]) ignore critical path analysis, and so underestimate its value by
restricting it to systems near the percolation threshold. The transport property, for
which the impact of the fractal structure is greatest is solute dispersion (Chap. 10).

The fact that percolation variables behave as power laws in p−pc, as in Eq. (1.3)
means that they must either diverge or vanish at p − pc, depending on whether the
exponent is negative or positive. The term singular behavior (in mathematics) or
critical behavior (in physics) however, refers to either divergences or zeroes.

It is important to consider some examples of problems that can be solved “ex-
actly,” providing a reference point for the more general scaling arguments typically
advanced in percolation theory. Most of these exact solutions derive from Essam
[15] or Stauffer [46]. We start with one of these, the calculation of the correlation
length in 1-dimension.

1.6 The Correlation Length in One Dimension

It is possible to use the definition (Eq. (1.1)) to make a direct calculation of the
correlation length in one dimension. That calculation is described nicely in Bunde
and Havlin [8]. The calculation was stated explicitly in terms of site percolation,
but is essentially the same for bond percolation. Consider a one-dimensional chain,
where each site is occupied randomly with probability p. Clusters of length s consist
of chains of s consecutive occupied sites. Since any empty site breaks an infinite
chain, the percolation probability in one dimension is pc = 1: every single site must
be occupied. Recall that the correlation function, g(r), is the mean number of sites
on the same cluster at a distance r from an arbitrary occupied site. In order for
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another occupied site even to be on the same cluster as the given site, each site
in between must be occupied, a situation that occurs with probability pr in each
direction, leading to,

g(r) = 2pr (1.4)

Substituting Eq. (1.4) into the definition of the correlation length (Eq. (1.1)) leads
to

χ2 =
∑∞

r=1 r2g(r)
∑∞

r=1 g(r)
=

∑∞
r=1 r2pr

∑∞
r=1 pr

(1.5)

In this expression the sum of pr is simply a geometric series that yields the well-
known result 1/(1−p). The factors r2 may be verified to be generated from the sum
over pr by the (term by term) operation p(d/dp)(pd/dp)

∑
pr , since each deriva-

tive generates from pr a factor r , but steps the power down by 1, requiring each
time the compensating operation of subsequent multiplication by the factor p. The
second derivative essentially generates (1 − p)−3 from (1 − p)−1, while the simple
sum generates (1 − p)−1 in the denominator, and the result for χ2 is a quotient of
the two [8],

χ2 = 1 + p

(1 − p)2
or χ ∝ (pc − p)−1 (1.6)

The final result ignores the factor of 1+p in the numerator for the purpose of finding
the critical exponent (the power of p −pc) for the correlation length. Equation (1.6)
thus both confirms the proposed functional form of the correlation length as a di-
vergent power of p − pc, and yields the value ν = 1 in one dimension. In the case
of power law divergences, the choice of a definition of χ is somewhat arbitrary. See
Problem 1.2 for an alternate calculation of χ which leads to the same critical behav-
ior as shown in Eq. (1.6), although the exact result is different. Later we will also
find the value of ν by examining the cluster statistics. Percolation allows multiple
paths for analysis.

In order to be able to make general application of percolation theory to an ar-
bitrary system of course it is necessary to know the value of such powers under
all circumstances. Most of the exponents of percolation theory are the same for all
systems in a particular dimension, but differ importantly from dimension to dimen-
sion. In other words, for all three dimensional arrangements of bonds and sites, most
of the exponents of percolation theory do not vary, but they do vary depending on
whether the system sites are arranged in three dimensional space, or on a plane, for
example.

Note that the correlation length represents an actual distance as measured in the
Euclidean space and is thus a measure of a cluster size. The shortest connecting path
that links opposite sides of a cluster has a step-by-step length called the chemical
distance, rl, [3, 28, 32] since this is the actual distance of particle transport.



1.7 The Relationship of Scale Invariance and Renormalization 11

1.7 The Relationship of Scale Invariance and Renormalization,
and the Relationship of the Renormalization Group
to Percolation Theory

Renormalization is both a technique and a conceptual foundation for understanding
percolation. As a technique it provides many useful results, but its conceptual role
is even more important here.

Renormalization as a technique is a rather complex mathematical procedure, cor-
responding (in real space though not in Fourier space) to a relatively simple physi-
cal operation. This operation is a kind of “coarse-graining,” caused by the observer
drawing back to a greater distance. If the system has true scale-invariance, i.e., is ex-
actly at the percolation threshold, it will be impossible to detect a statistical change
in the appearance of the system as the scale of observation is increased. A system
with an infinite correlation length looks, in a statistical sense, the same at all finite
length scales. But if the system is merely near the percolation threshold, so the cor-
relation length is finite, then drawing back to a greater distance will make the corre-
lation length look smaller. Eventually the observation scale will be greater than the
correlation length. This (relative) diminution of the correlation length means that
at larger length scales the system must appear as though it were further from the
percolation threshold. Thus it must also be possible to redefine p simultaneously to
be enough closer to pc so that the appearance of the system does not change. This
concept underlies the assertion that it is possible to define ‘scaling’ variables.

In the operation of renormalization, systems which are precisely at percolation
remain at percolation. However, with increasing length scales, systems not at perco-
lation appear to move away from percolation. Considered in terms of the redefined p

as a function of the scale of observation, repeated renormalization leads to com-
pletely different trajectories for systems above and below the percolation threshold.
The trajectory produced by repeated renormalization of a system at the percolation
threshold is a point, since no changes can be observed. But the trajectory produced
by such repeated applications of renormalization to a system not at percolation will
always be away from the percolation threshold. Specifically, if the starting state has
p > pc, the trajectory will always be towards p = 1, while if the starting state has
p < pc, the trajectory will always be towards p = 0. If there is a largest cluster or
largest hole size, this cluster (or hole) will look smaller every time the renormaliza-
tion is applied. If the initial p value is either zero or one, renormalization will not
affect p. Thus p = 0, p = pc, and p = 1 are all “fixed points” of the renormaliza-
tion procedure (though p = 0 and p = 1 are “trivial” fixed points, giving no new
information). This same behavior is observed at second order phase transitions, for
which the correlation length also diverges. While the language and understanding
of phase transitions has become more complex since the study of percolation theory
commenced, the percolation transition does qualify as a second order phase tran-
sition in the traditional definition and the theoretical development for such critical
phenomena can be adopted for percolation theory.
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1.8 Cluster Statistics of Percolation Theory

Probably the most elegant means to summarize the theory of percolation is to use
the scaling theory of percolation clusters [45]. In principle one can formulate most
of percolation theory simply in terms of its cluster statistics, and these statistics also
allow easy analogies to other phase transitions. The purpose of this section is not to
provide a detailed overview; for that the reader is referred to Stauffer’s review [45].
What will be discussed here is sufficient to demonstrate the internal consistency of
percolation theory, and to provide less experienced readers with multiple avenues
for understanding and application.

The cluster statistics of percolation define the concentration ns of clusters of
volume (number of sites) s as a function of p. Consider initially ns for p < pc,
deferring until later in this section the more complicated case including an infinite
cluster. The sum

∑
sns over all cluster sizes must equal p, since it is by definition

the total number of occupied sites per unit volume. Clearly as p increases toward pc
the number of large clusters increases. It turns out that precisely at pc there can be
no volume scale, because there is no length scale: ns must therefore follow a power
law in s. So at percolation ns must obey [18],

ns(p = pc) ∝ s−τ (1.7)

Here τ is an exponent whose value will be discussed later. How does ns depend on
p? For p �= pc a length scale exists, and its value is the correlation length χ . Suppose
that one increases the observation length scale (reducing χ ) and simultaneously
takes the system closer to pc (increasing χ ); one can recover the original appearance
if these operations cancel perfectly. Stauffer [45] states “We assume that the ratio
[. . . ] ns(p)/ns(pc) and similar ratios of other cluster properties are a function of the
ratio s/sχ .” Here sχ is a typical cluster volume at p, which, since cluster sizes follow
a power law, is proportional to the limiting (or largest) cluster volume at p. Since
the linear extent of the largest clusters with s = sχ is χ , which diverges as p → pc,
the limiting cluster volume must also diverge in the limit p → pc. The exponent of
(p − pc) which restricts the largest cluster volume is now denoted −1/σ , allowing
the possibility that it is different from −ν. This exponent must also be negative in
order that the largest cluster size diverge at p = pc. Thus (s/sχ )σ = sσ (p −pc) ≡ z

is the scaling variable that allows the simultaneous effects of a size change and a
change in p to cancel precisely. Consequently the ratio of the cluster numbers at p

and at pc can be written

ns(p)

ns(pc)
= f (z) = f

[
sσ (p − pc)

]
(1.8)

The value of σ is not known a priori. Equation (1.8) may be called semi-empirical in
that it was designed to: (1) accommodate results of simulations, which revealed that
the cluster numbers ns decay according to a power law (with exponent τ ) precisely
at the percolation threshold, and (2) allow simultaneous rescaling of s and p in
such a way that the system looks the same, because the product (p −pc)s

σ remains
the same. Approximate values of τ and σ can be found from simulations and/or
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renormalization procedures. These values will be the same for all systems of a given
dimensionality, but have a dependence on spatial dimensionality, d (we will use the
notation 1-d, 2-d and 3-d to denote the dimensionality of the Euclidean space, in
which the system is embedded).

Substitution of p = pc in the left hand side of Eq. (1.8) forces f (0) = 1. The
exact form of the function f was uncertain for a long time, with various approxima-
tions proposed. In the Stauffer review it was pointed out that a Gaussian form for f

could fit a wide range of data. Thus a useful approximation for ns(p) is [45]

ns(p) ∝ s−τ exp
{−[z − z0]2} ≈ s−τ exp

{−[
sσ (p − pc)

]2}
(1.9)

The approximation made here, which omits z0, is motivated by the observation that
z0 must have some dependence on the system investigated and thus cannot be uni-
versal Nevertheless the fact that a z0 exists makes the cluster statistics, in principle,
asymmetric about the percolation transition, for which z = 0. For bond percolation
on a square lattice in two dimensions), however, there is perfect symmetry between
connected and unconnected bonds and the existence of a term z0 would imply that
extrema for the clusters of interconnected bonds would occur at different values of
p than for clusters of unconnected bonds. However, it must be kept in mind that
the neglect of this detail could lead to small discrepancies. The form of Eq. (1.9)
makes it apparent that for p �= pc the cluster statistics decay as a power law only up
to a certain maximum size s = sχ , which is proportional to |p − pc|−1/σ . This pro-
vides an explicit context for the scaling arguments above, because clusters of larger
volume rapidly become extremely rare when |sσ (p − pc)| � 1.

One can use Eq. (1.9) in many ways. As a first application let us use Eq. (1.9)
to find the fraction of sites connected to the infinite cluster at p > pc. Note that the
summation of sns from s = 1 to infinity is qualitatively different for p > pc from
its form for p < pc. For p < pc, every occupied site (or bond) must be located on
some finite cluster, but for p > pc, some fraction P∞ of occupied sites is found
on the infinite cluster, not included in the summation. Thus every site on the lattice
is either (1) empty with probability 1 − p, (2) occupied and on the infinite cluster
with probability pP∞, or (3) occupied but not on the infinite cluster with probability
p(1 − P∞) ≡ ∑

sns. From these results one finds

P∞ = 1 − 1

p

∑

s

sns (1.10)

Stauffer’s argument, which has been amply verified, is that it is the “singular” be-
havior of cluster sums, such as Eq. (1.10), which gives the percolation quantities
of interest, such as P∞, χ , etc. A sum of sns with ns taken from Eq. (1.9) may
be approximated by an integral. The functional dependence of such an integral on
variables such as p − pc can be evaluated by transforming the argument of the ex-
ponential to dimensionless variables, i.e., z, (no dependence on p − pc). The result
then contains one or more terms that are products of a power of p−pc, and a definite
integral which integrates to some (unimportant) constant. In such cases, singular be-
havior refers to the lowest non-analytical power of p−pc. An even easier technique
for evaluating the functional dependence of such sums exists, however.
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A sum over a power law distribution of s, truncated at a maximum s value, will
typically be dominated by the largest s allowed. At large values of its argument,
the exponential function is a much more rapidly diminishing function than a power
law, but at small values of its argument it is nearly a constant. Thus, the exponential
function can be approximated to do nothing except to truncate the sum, or integral,
over sns at a value of s proportional to (p − pc)

−1/σ . This argument leads to the
following result:

∫ (p−pc)
−1
σ

1
ss−τ ds ∝ p

[
1 − (p − pc)

τ−2
σ

]
(1.11)

The factor p is included since when p = pc the integral must yield p. Using
Eq. (1.11) in Eq. (1.10) gives,

P∞ = (p − pc)

p

τ−2
σ ∝ (p − pc)

β (1.12)

The exponent β is customarily used for the critical behavior of P∞. Equation (1.12)
relates β to τ and σ via β = (τ − 2)/σ . If the cluster statistics of percolation theory
are known accurately Eq. (1.12) allows direct calculation of β . Otherwise Eq. (1.12)
still gives an important scaling relationship.

Since P∞ must vanish at p = pc β ≥ 0. Therefore τ ≥ 2. In one dimension, be-
cause pc is exactly 1, there is no regime p > pc, and β = 0 is allowed, but in all
higher dimensions, β > 0. In systems of practical interest (two and three dimen-
sional systems) 0 < β < 1. However, we will only be able to calculate accurately
two values of β , 0 in one dimension and 1 in six dimensions or higher (or on Bethe
lattices). Though we only show calculations of selected values of the critical expo-
nents of percolation theory, summaries of values given elsewhere are also provided.

One can, in fact, calculate an entire series of integrals similar to Eq. (1.11). In
particular, the kth moment of the cluster distribution is given by,

Mk =
∫ (p−pc)

−1
σ

1
sks−τ ds ∝ |p − pc| τ−1−k

σ (1.13)

Since the lower moments, M0, M1, and M2, all correspond to important physical
properties, the values of (τ − 1 − k)/σ for these cases receive special designations.
Thus Eq. (1.13) will provide the basis for three scaling relationships that we will
use later. The possibility to organize several scaling relationships into a single equa-
tion (1.13) makes the cluster statistics formulation of percolation theory so appeal-
ing. But further discussion of these scaling relationships is postponed until after we
have shown how to calculate ns in 1-d.

1.9 Derivation of One-Dimensional Cluster Statistics and
Discussion of Fractal Dimensionality

In one dimension the critical bond fraction for percolation, pc = 1. This result is
necessary because any break in the chain of elements will prevent the formation of
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a cluster of infinite size that spreads from negative to positive infinity. A purpose
in repeating this fundamental condition is to remind the reader that in 1-d systems
expressions containing 1 − p may be rewritten as pc − p. The next discussion fol-
lows Stauffer [45] in its general content. The probability of finding a cluster of s

interconnected bonds, all in a row, is

ns = ps(1 − p)2 (1.14)

where the factor (1 − p)2 truncates the s-cluster on both ends. In the case that
pc − p 
 1 (p very near pc), this result can be rewritten to lowest order in pc − p

(noting that 1 − p = pc − p) as,

ns = s−2[1 − (pc − p)
]s[

s2(pc − p)2] = s−2 exp
[−s(pc − p)

][
s2(pc − p)2]

(1.15)

“Derivation” of Eq. (1.15) from Eq. (1.14) requires also use of the approximation
(1 − x)s = exp(−sx), valid for x 
 1. This approximation is used again when the
cluster statistics for a Bethe lattice are derived. The cluster statistics of percolation
theory can always be written in the following form,

ns = s−τ f
[
sσ (p − pc)

]
(1.16)

Equation (1.15) and Eq. (1.16) show that for one dimensional systems τ = 2 and
σ = 1. Also, consistent with σ = 1, one sees that there is a cut-off in the occur-
rence of clusters for sizes s > smax ≈ 1/(pc − p). In 1-d the length of a cluster of
s elements is s (times the fundamental bond length), so that the linear dimension
of the largest cluster for p < pc is also (pc − p)−1. This result then defines the
correlation length and yields the value ν = 1 in agreement with Eq. (1.6). Note that
the fact that smax ∝ (pc − p)−1/σ and that χ ∝ (pc − p)−ν implies the result that
smax ∝ χ1/σν = χ1 where the equality holds in 1-d. Any time the total “volume” (s)
of an object is proportional to its linear dimension (χ ) to an exponent, the implica-
tion is that the “dimensionality” of the object is that exponent. As a consequence,
the combination of exponents, 1/σν has become known as the fractal dimensional-
ity, df, of percolation clusters, i.e., of large clusters near the percolation threshold.
This fractal dimensionality has been called a “mass” fractal since it refers to a re-
lationship between volume (proportional to mass) and linear dimension. Since for
d = 1 df = 1 as well, in one dimension large clusters near the percolation threshold
do not (cannot) have the rough “surface” associated with fractal objects. However,
in systems of larger dimensionalities, df turns out to be less than d .

1.10 Argument for Dimensionally-Dependent Scaling Law,
Implications for Critical Exponent, τ , and Applications
to Critical Exponents

The scaling form of Eq. (1.8) for the cluster statistics is independent of the dimen-
sionality of the system. The exponents of percolation theory that appear in Eq. (1.8),
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Eq. (1.12) and similar equations below depend only on the dimensionality of the sys-
tem The scaling laws in Eq. (1.13) do not depend explicitly on the dimensionality
allowing, in principle at least, the possibility that the values of the exponents are
the same in all dimensions. But there is an important scaling law that does depend
on dimensionality. The existence of this scaling law forces a variation of the values
of the critical exponents with dimensionality, necessitating the tabulation of values
given later in this chapter. Here we derive the dimensionally-dependent scaling law
that relates the various critical exponents from percolation theory.

The dimensionally-dependent scaling law relating various critical exponents
from percolation theory can be derived starting again from the cluster statistics of
percolation, though the cluster statistics are not, by themselves, sufficient for this
derivation. We first need to rewrite the cluster statistics of percolation theory in
terms of the linear extent of the clusters. A cluster may be defined to have some
linear extent N , where N is a number which, when multiplied by a basic length
scale (such as a bond length) gives the linear dimension of the cluster. We know
that the volume of a cluster of linear extent N is equal to s = N1/σν , on account of
the fractal dimensionality of the clusters. We have derived the form of the cluster
statistics in one dimension, and it has been demonstrated that this form is also ap-
propriate in larger dimensions, though with different values of the exponents [45].
Further, the scale-invariance of the system exactly at percolation requires that the
cluster statistics follow a power-law decay, so we can write

ns(p = pc) = s−τ (1.17)

Now use the probabilistic identity,

nsds = nNdN (1.18)

to obtain,

nN = N− (τ−1−σν)
σν (1.19)

If one integrates this (unnormalized) probability density function over a range of
values from, say, N0 to 2N0, which in a power-law discretization scheme (appropri-
ate for self-similar media) would represent one “size class,” one obtains,

P(N0) = N
− τ−1

σν

0 (1.20)

The significance of Eq. (1.20) becomes clear when it is discussed in the context of
the self-similarity of the medium at p = pc. At percolation, typically one cluster of
linear extent N0 should be found in a volume Nd

0 (for any value of N0) in order to
be (1) consistent with the idea of percolation, i.e., that one can expect percolation
to occur in any size system, all the way to infinite size, and (2) consistent with the
concepts of self-similarity, i.e., that all such volumes look alike. Thus the concen-
tration of clusters of size N0 is proportional to N−d

0 so that the product of Nd
0 and

N−d
0 = 1. The implication is that,

τ − 1

σν
= d τ = 1 + d

df
(1.21)
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This is the fundamental scaling relationship of percolation theory that cannot be ob-
tained directly from the cluster statistics. It is the only such relationship that involves
explicitly the dimensionality of the space, d , in which the percolation problem is em-
bedded. Equation (1.21) relates the fractal dimensionality, 1/σν, to the Euclidean
dimensionality, d in terms of how rapidly cluster numbers decay with increasing
size.

It is also straightforward to derive the ratio of the number of connected sites
of a large cluster to the total number of occupied sites in the volume spanned by
that cluster. Such a ratio is proportional to the mass M of the cluster divided by
its volume V , and gives thus the cluster’s density, ρ (e.g., [36]). In the context of
percolation, a “large” cluster has linear extent approximately equal to the correlation
length. The result for ρ is

ρ = M

V
= χdf

χd
= [

(p − pc)
−ν

] 1
σν

−d = (p − pc)
dν− 1

σ ≡ (p − pc)
β (1.22)

Equation (1.22), just above percolation in the limit of a cluster of infinite extent,
also gives the fraction of sites, which is connected to the infinite cluster, justifying
the final definition in Eq. (1.22). From Eq. (1.22) we can see that

β = dν − 1

σ
(1.23)

or

df = 1

σν
= d − β

ν
(1.24)

One can combine Eq. (1.21) and Eq. (1.24) to write,

τ − 2

σ
= β (1.25)

which is the same result as that derived directly from the cluster statistics. Thus,
combining the expression for the density of large clusters with the dimensionally-
dependent scaling relationship yields one of the known cluster scaling relationships
(from Eq. (1.12)). The implication of this redundancy is that the density of large
clusters is dependent on the probability that an arbitrary site is found on the infinite
cluster. Therefore the argument leading to Eq. (1.22) only appears to be new.

The conclusion that τ > 2 (after Eq. (1.12) can be drawn simply by examining
the definition of ns. Consider the integral,

∫ ∞

1
snsds = s2−τ

∣
∣∞
1 (1.26)

which represents the total number of connected sites. This integral diverges unless
τ > 2. Although in dimensions d > 1 this is strictly an inequality, in d = 1 the value
τ = 2 is allowed. The reason for this is that the percolation probability is identi-
cally 1. So there is no regime p > pc in one dimension. Further, at p = pc the
concentration of clusters of linear size s cannot really follow a power law: all sites
are connected, there is only one cluster, and it is infinite in extent. Precisely at pc in
one dimension, then, the infinite cluster must be Euclidean, as implied already from
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the equivalence of d and df. Equation (1.11), from which the scaling relationship
(Eq. (1.12)) for the exponents in ns was derived, yields in 1-d fundamentally differ-
ent results in the limit p → 1 and for p = 1. In fact, a sudden increase in P∞ from
0 to 1 over an infinitesimally small increase in p is consistent with a value of β = 0.
Note that β = 0 is also obtained by application of the scaling equations Eq. (1.23)
or Eq. (1.25) consistent with d = df or τ = 2. The other immediate implication of
the argument from integral 1.26 that τ > 2 is that Eq. (1.21) then requires df < d .

Finally, the most attractive aspect of the cluster statistics is that it is possible to
use the same starting point (Eq. (1.13)) to derive three different scaling relationships.
These relationships arise from applying the same techniques to the sums,

∑
s0ns ∝

(p −pc)
2−α ,

∑
s1ns ∝ (p −pc)

β ,
∑

s2ns ∝ (p −pc)
−γ . The scaling relationships

from the second was already given in Eq. (1.12) (and (1.25)); the first and third can
be written in the following forms (see Problems 1.4, 1.5, and 1.9),

2 − α = τ − 1

σ
= dν (1.27)

τ − 3

σ
= −γ (1.28)

The three sums also have interesting physical significance; for magnetic systems
they correspond to the free energy, the magnetization, and the magnetic susceptibil-
ity, respectively. In percolation problems, the first is the mean number of clusters,
the second yields the fraction of sites on the infinite cluster, while the third yields
the mean mass of the clusters. Each then relates an important exponent from exper-
iment to τ and to σ . Using these three scaling relationships (Eq. (1.27), Eq. (1.28),
and Eq. (1.12)) and the dimensionally dependent scaling relationship (Eq. (1.21)) it
is possible to define all six critical exponents in terms of just two, most simply, for
example, τ and σ from the cluster statistics.

1.11 Explicit Calculations of the Second Moment of Cluster
Statistics in One Dimension

It will be necessary here to relate the second moment, M2, of the cluster distribution
to a simple sum over g(r). In fact, the sum over g(r) is easy to evaluate; any diffi-
culty comes from the argument of its equivalence to M2. Together with the results of
calculations already shown and the scaling relationships of percolation we will then
be able to generate the remaining exponents of percolation theory for the case of one
dimensional systems. We will also generate in subsequent sections the exponents of
percolation theory for infinite dimensional systems and then use the information
generated from the extreme cases to understand the dimensional dependence of the
exponent values.

The mean mass of finite clusters is shown in Bunde and Havlin [8] to be propor-
tional to the second moment of the cluster size distribution. How do they show this?
They start with the sum

∑
sns and use the exact expression for ns in one dimension
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to show that this sum over finite cluster sizes (the only clusters that exist in one
dimension) is exactly p.

The probability that an arbitrary lattice site belongs to an s-cluster is sps(1−p)2.
The factor s arises from the possibility that such an arbitrary site can be any of the
s sites of the cluster. The authors then construct the corresponding probability per
cluster site, which is just ps(1 − p)2. Now construct the sum,

w ≡
∞∑

s=1

sns = (1 − p)2
∞∑

s=1

sps = (1 − p)2
∞∑

s=1

p
d

dp
ps = (

1 − p2)p
d

dp

∞∑

s=1

ps

(1.29)

The sum is easily performed with the result

w = (1 − p)2p
d

dp

(
1

1 − p
− 1

)

= (1 − p)2p

(
1

1 − p

)2

= p (1.30)

The mean mass of a cluster can be defined as then

S =
∞∑

s=1

s

[
sns

∑∞
s=1 sns

]

(1.31)

with the factor in brackets generating the probability of an arbitrary site being found
on an s-cluster and the product of this factor with s then giving the expected number
of sites on s-clusters. Thus the mean mass is seen to be proportional to the second
moment of the cluster distribution (s2 in the sum).

In one dimension, since g(r) gives the expected number of cluster sites at dis-
tance r the mean mass of a cluster is given [8] as follows,

S ≡ M2 = 1 +
∞∑

r=1

g(r) =
∞∑

r=0

pr = 1

1 − p
= 1

pc − p
(1.32)

M2 is traditionally characterized by the exponent γ , i.e., S ∝ (pc − p)−γ . Thus
γ = 1. From Eq. (1.28) one has (τ − 3)/σ = −γ , so this result could be used to
infer the value of τ , if one already knew σ (which we found using Eq. (1.15) to
be 1). Of course in that derivation we also found τ and ν.

Since we have already shown how to obtain four exponents in one-dimensional
systems, we can generate the remaining values. In fact α = [2 − (τ − 1)/σ ] = [2 −
(2−1)/1] = 1, and β = (τ −2)/σ = (2−2)/1 = 0. Of course, following Eq. (1.26)
we already argued on physical grounds that β = 0. Thus we have the complete suite
of these fundamental exponents for one-dimensional systems.

1.12 Calculation of the Correlation Length on a Bethe Lattice

Sections 1.12 through 1.15 give some exact calculations of exponents of percola-
tion theory for infinite dimensional systems (in particular, Bethe lattices) as well
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as a mean-field calculation of the exponent β . This mean-field result for β is inde-
pendent of dimensionality, d . Using these values together with the scaling relation-
ships (Eqs. (1.25), (1.27) and (1.28)) and one physical argument from Bunde and
Havlin [8] allows calculation of all the exponents of percolation theory in infinite
dimensional systems. The scaling relationships in Eqs. (1.25), (1.27), and (1.28) are
consistent with the values of the exponents for infinite-dimensional systems and the
mean-field calculation of β . But these values are consistent with the dimensionally-
dependent scaling relationship (Eq. (1.21) only for d = 6. This will make it possible
(in Sect. 1.16) to define the range of dimensionalities for which the complete set
of scaling relationships from percolation theory is accurate. Since this range of di-
mensionalities turns out to be 1 ≤ d ≤ 6, the reader, especially those interested only
in application of percolation theory to problems of subsurface flow and transport,
may assume that the above framework of scaling relationships is accurate for sys-
tems of experimental interest and skip Sects. 1.12 through 1.16 on a first reading.
Nevertheless the following material is included here for those readers interested in
understanding better the framework of the theoretical results they are encounter-
ing. Readers who skip these sections will still encounter five derivations: (1) cluster
statistics in one dimension, (2) the correlation length in one dimension, (3) the mean
cluster mass in 1-d, (4) the correlation length in two dimensions using renormaliza-
tion techniques, (5) the relationship between fractal dimensionality and tortuosity.
Ability to perform some derivations as well as familiarity with the scaling laws helps
cement the understanding of people new to the field of percolation theory.

Percolation problems can be solved rigorously on a Bethe lattice (Cayley tree)
as well as in one dimension. In contrast with the one dimensional system, the Bethe
lattice has one advantages: pc < 1 (meaning that it is possible to investigate behavior
at p > pc as well as p < pc). In contrast to all other dimensional systems, Bethe
lattices have the following advantage: there are no loops in the structure. In addition,
the Bethe lattice actually reduces to a one-dimensional system in a particular limit. It
is a relatively simple argument to show that the Bethe lattice is otherwise equivalent
to an infinite dimensional structure, so that determination of percolation exponents
on Bethe lattice in addition to their values in one-dimensional systems gives these
exponents in two extreme cases. A Bethe lattice of coordination number Z has a
central site from which Z branches of unit length emanate. The end of each branch
is another site, which connects through Z − 1 branches to new sites. A Bethe lattice
with Z = 3 is like a family tree: at each generation there are twice as many ancestors
as in the previous one, and it radiates out from a single point.

The lack of loops in the system means that two sites can be connected by only
one path. One can draw (with some difficulty) a Bethe lattice on a two-dimensional
surface, but, as we will see, the Bethe lattice is equivalent in several respects to an
infinite dimensional object. Clearly a Bethe lattice is a hierarchical structure, and it
is convenient (and consistent with a drawing) to refer to each higher order of the
hierarchy as a higher order shell. As Bunde and Havlin [8] point out, the Euclidean
distance has no meaning on a Bethe lattice; only the chemical distance, rl between
two sites has any relevance. Thus the correlation length is calculated with respect
to a distance measured in shell separations, l. In particular, the chemical distance
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between the central site and a site in the lth shell is rl = l. The lth shell of the
tree consists of Z(Z − 1)l−1 sites. For the special case of Z = 2 the lth shell thus
contains 2 sites, as in a one-dimensional chain, but in all other cases the number
of sites increases exponentially since the l dependence shows up in the exponent.
In a d-dimensional lattice, the number of sites at distance l increases as ld−1 (the
surface area of a sphere of radius r being proportional to r3−1, for example). Expo-
nential functions may be expressed in terms of a Taylor series such as

∑
xn/n!. As

x increases, the power of the dominant term increases as well. As x increases with-
out bound, the dominant term in the series becomes the largest (or infinite) power,
meaning that it is consistent to regard a Bethe lattice as an infinite dimensional struc-
ture. From the property of universality of the exponents in percolation theory one
can thus propose that the exponents derived for the Bethe lattice are the same as
for any infinite-dimensional lattice. Moreover, since Toulouse [50] argues that the
upper critical dimensionality for percolation is 6 (which we discuss in Sect. 1.16),
it can be argued that the results derived for the exponents for the Bethe lattice are
relevant to all systems with d ≥ 6.

Assume that some fraction p of the sites on a Bethe lattice is occupied. The
correlation function g(l) is defined to be the mean number of sites on the same
cluster at distance l from an arbitrary occupied site. In order for two sites separated
by a distance rl both to belong to the same cluster, each site in between the two sites
must be occupied, bringing in a factor pl−1; thus the probability that the second
site is occupied and all the intervening sites as well is pl . The number of sites
on the l-th shell is Z(Z − 1)l−1, making g(l) the product of pl (the probability
that a given site is connected) and Z(Z − 1)l−1 (the number of possible connected
sites). The correlation function, [p(Z − 1)]lZ/(Z − 1), being nearly (p(Z − 1))l ,
obviously trends rapidly to zero if the product p(Z − 1) < 1, while it diverges for
p(Z − 1) > 1. This makes pc(Z − 1) = 1 the defining equation for the critical
percolation probability, leading to pc = 1/(Z − 1).

Next, the correlation length can be calculated in terms of the variable l as

χ2 =
∑∞

l=1 l2g(l)
∑∞

l=1 g(l)
≈

∑∞
l=1 l2(Z − 1)lpl

∑∞
l=1(Z − 1)lpl

(1.33)

This sum may be performed by the same techniques as used in the one-dimensional
chain, i.e., the geometric sum is now 1/(1 − (Z − 1)p) = 1/(1 − p/pc) =
pc/(pc − p). The same trick to generate the factor l2 in one-dimensional lattices
works here as well, since differentiation with respect to p leaves the factor (Z − 1)
alone. Bunde and Havlin [8] then find

χ2 ∝ (p − pc)
−2 (1.34)

and the correlation exponent equals 1 with respect to the chemical distance, l (in
l-space). Since the Euclidean dimension has no meaning on the Bethe lattice, there
is no purpose to make a direct calculation of the correlation length as an estimate
of the Euclidean dimension of the largest cluster for p < pc. But Bunde and Havlin
[8] make the argument that on other lattices of high enough dimension (greater than
the critical dimension, 6, as it turns out) any path on a cluster behaves like a random



22 1 Percolation Theory: Topology and Structure

walk (with the number of steps proportional to l), so that r2 ∝ l. This argument
implies that for d ≥ 6 (other than Bethe lattices) the correlation length as a function
of the Euclidean distance should have exponent ν = 1/2.

1.13 Explicit Calculations of the Second Moment of Cluster
Statistics on a Bethe Lattice

The calculation of the mean mass for a Bethe lattice is very similar to its calculation
in one-dimensional systems. On a Bethe lattice one has

S = 1 +
∞∑

l=1

Z(Z − 1)l−1pl =
(

Z

Z − 1

) ∞∑

0

[
pl(Z − 1)l

]

=
(

pc
pc

pc+1

)
1

1 − (Z − 1)p
= pc + 1

1 − p/pc
= pc(pc + 1)

pc − p
(1.35)

This result yields once again γ = 1. On the Bethe lattice this calculation turns out
to be quite useful indeed.

The exponent β = 0 describing the behavior of the infinite cluster in one dimen-
sion (and given by the first moment of the cluster statistics) was already inferred in
Sect. 1.10. The discussion of the exponent β [8] is slightly more complicated on a
Bethe lattice, but the next section gives a derivation valid whenever “mean-field”
treatments are appropriate (as it will turn out, for d ≥ 6, and thus also on the Bethe
lattice).

1.14 Mean-Field Treatment of the Probability of Being
Connected to the Infinite Cluster

Consider a “mean-field” treatment of the bond percolation problem on a lattice with
coordination number (number of nearest neighbors), Z. In mean-field treatments all
sites are regarded as equivalent. While all sites were equivalent before the bonds
were actually assigned, this equivalence is lost afterwards, and this is a reason why
mean-field treatments can fail. Nevertheless, a mean-field treatment does illuminate
some important concepts, and we can apply these further.

Assume that an infinite cluster of connected sites exists. Define the probability
that some particular site is connected to the infinite cluster as P∞. Then the proba-
bility that it is not connected is 1 − P∞. The probability that the site is connected
to one of its nearest neighbors, chosen arbitrarily, is p. According to the mean-field
hypothesis, the probability that neighbor site is connected to the infinite cluster is
assumed to have the same value P∞, with the value independent of whether the two
sites are actually connected or not. The probability that the given site is connected to
the infinite cluster over this particular nearest neighbor is pP∞, where the product
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is used because of the independence of the bond probability and the probability P∞.
The probability that it is not connected to the infinite site over this particular nearest
neighbor is 1 − pP∞. The probability that it is not connected to the infinite cluster
over any of its nearest neighbors is thus (1 − pP∞)Z . Thus we must have,

1 − P∞ = (1 − pP∞)Z (1.36)

which states that the probability that a site is not connected to the infinite cluster is
equal to the probability that it is not connected over any one of its nearest neighbor
sites, and that the probability that each of those neighbor sites is not connected to
the infinite cluster is identical. Equation (1.36) can be rewritten as,

(1 − P∞)
1
Z = 1 − pP∞ (1.37)

Note that for p < 1/Z, this equation has only one solution, namely, P∞ = 0. If
the probability that any arbitrary site is connected to the infinite cluster is 0, there
must not be an infinite cluster. If an infinite cluster does not exist, the system must
be below the percolation threshold. This indicates that to lowest order 1/Z is the
percolation threshold. We expand Eq. (1.37) (keeping the first two terms of a Taylor
series) in the variable p − 1/Z = p − pc and assume that P∞ 
 1.

1 + 1

Z
(−P∞) + 1

2
(−P∞)2

(
1

Z

)(
1

Z
− 1

)

= 1 −
(

1

Z
+ p − 1

Z

)

P∞ (1.38)

Note that the first two terms on each side of the equation are identical and can be
subtracted off. Then we have,

P∞ = (p − 1
Z

)

1
Z

(1 − 1
Z

)
= p − pc

pc(1 − pc)
(1.39)

P∞, like all other percolation quantities, is known to be a power of p − pc. Thus
the mean-field treatment directly predicts pc = 1/Z as can be seen from the numer-
ator. Note the implication that pc = 1/Z has no dependence on d . This is incorrect.
However, we are going to assume that the result that pc ∝ 1/Z is correct and that
the proportionality constant may depend on dimensionality. For our purposes this is
the most important result of the application of the mean-field treatment to find P∞
and we will use it later to deduce some further values of pc.

Comparison of Eq. (1.39) with P∞ = (p − pc)
β allows the identification β = 1.

β = 1 is the mean-field result. Like all such “classical” results, it is independent
of d . It will be argued to be relevant for systems with d ≥ 6. β = 1 can be derived
exactly for a Bethe lattice.

1.15 Cluster Statistics on a Bethe Lattice

In a one-dimensional lattice the cluster statistics were easy to develop. They are
almost as easy to develop on a Bethe lattice, but one difference is that it is some-
what more difficult to define the perimeter of an s-cluster, i.e., the number of sites
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which terminate the cluster. It is, however, relatively easy (for Z = 3, at any rate) to
convince oneself that a cluster of 1 site has Z empty sites surrounding it, a cluster
of 2 sites has Z + Z − 2 empty sites surrounding it, and a cluster of s sites has
Z − 2 more empty sites surrounding it than a cluster of s − 1 sites. The number of
perimeter (empty, bounding) sites can be called u, and u is thus,

u(s) = Z + (s − 1)(Z − 2) (1.40)

Note that u(s) = Z in the case Z = 2, for which the Bethe lattice collapses to a
1-d chain. Since an s-cluster again can connect only clusters on shells separated by
l = s, all sites in between must also be occupied, and

ns = gxp
s(1 − p)u(s) = gxp

s(1 − p)Z+(s−1)(Z−2) (1.41)

where gs is just the number of configurations for an s-site cluster. If p(1 −p)Z−2 is
expanded in a Taylor series around pc = 1/(Z − 1) it is possible to show that [8]

ns ≈ ns(p)f (p) (1.42)

where f (p) = (1 − [(p − pc)
2/2pc(1 − pc)])s . This expression can be rewritten

as exp(−s[(p − pc)
2/2pc(1 − pc)]) for p nearly pc. In order to write this function

as a function of the scaling variable z = (p − pc)s
σ , one must choose σ = 1/2 so

that the product of the factors (p − pc)s
σ is then squared. Note that the form of

the cluster statistics (a Gaussian in p − pc) is the same as the approximate result,
Eq. (1.9), from Sect. 1.8.

We now have made calculations of the two exponents γ and σ for the Bethe
lattice. We can use one of the scaling relationships to infer the value of τ .

τ = 3 + σγ = 3 − 1/2 = 5/2 (1.43)

Similarly we can find

α = 2 −
(

τ − 1

σ

)

= 2 − 3/2

1/2
= −1 (1.44)

We can thus now find most of the exponents of percolation theory in infinite dimen-
sional systems. The one exponent we do not really know at this point is ν for the
correlation length. The dimensionally-dependent scaling relationship cannot give it
to us. So, practically speaking, we must rely on the argument cited by Bunde and
Havlin [8] to find ν.

1.16 Summary of Relationships Between Exponents in One
Dimension and in Infinite Dimensions Using Scaling
Relationships. Implications for the Validity of Hyperscaling

The term hyperscaling was invented to describe scaling relationships that explic-
itly involve the dimension, d . The entire compendium of scaling relationships de-
veloped in Sects. 1.8 and 1.10 describe exponents with a dimensional dependence
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provided the dimensionally-dependent scaling relationship holds. These scaling re-
lations have been shown to be exact in one and two dimensions and are expected
to hold for systems of relatively low dimensionality. The set of exponents derived
for Bethe lattices on the other hand, except for ν(l), has been suggested to be valid
for all infinite dimensional systems. Mean-field theories are believed to describe the
behavior of the (“classical”) exponents of percolation theory in high enough dimen-
sions. If the same set of exponents is used independent of dimensionality for any
range of values of d , the dimensionally-dependent scaling relationship, Eq. (1.21),
cannot generally be true for that set of exponents. However, that set of exponents
might be consistent with Eq. (1.21) for one value of d . Thus the set of exponents de-
rived for Bethe lattices may be assumed to be correct in all dimensionalities greater
than some maximum (or critical) d = dc, if it is possible to find a d = dc for which
Eq. (1.21) holds for the classical exponents. Without a value of ν, however, this
hypothesis cannot be applied. If the suggestion described by Bunde and Havlin [8]
regarding the value of ν = 1/2 for infinite lattices is correct (which it is), then we
can check to see for which dimension (τ − 1)/σν = d holds. Using these results
one finds that (τ − 1)/σν = 6 ≡ dc meaning that the hyperscaling exponents must
be the same as the classical exponents for d = 6. This argument was first given by
Toulouse [50], and the additional inference is that for systems of dimensionality 6 or
greater, the values for percolation exponents found for Bethe lattices are valid. Note
that df = 1/σν = 4 holds independently of d for d ≥ dc. Thus, even in an infinite
dimensional system, the percolation cluster can be embedded in a 4-dimensional
space. This result helps to explain why any path on a cluster behaves like a random
walk for d ≥ 6.

For d < 6, where hyperscaling is valid, other means for finding the exponents are
required. One of the most productive such means is to apply renormalization group
calculations using the so-called epsilon expansion with ε = 6 − d as an expansion
parameter, since the values of the exponents are known in six dimensions when
ε = 6 − 6 = 0. dc = 6 then becomes the upper limit of validity of hyperscaling.

1.17 Calculation of the Critical Site Percolation Probability
for the Two-Dimensional Triangular Lattice and of the
Critical Exponent for the Correlation Length in Two
Dimensions

The following discussion is an exercise in the power, but also imprecision, of spa-
tial renormalization techniques. It requires some subsequent discussion. Although
the actual results are not quite right, they appear to be reasonable, are very nearly
accurate, and help illustrate an earlier state of thinking.

While the following development is expanded from Stauffer [45], his source was
Reynolds et al. [34]. Consider the image of the triangular lattice in Fig. 1.4. The
circles represent sites. Each site can potentially be connected to six nearest neigh-
bors. Imagine coloring in a fraction p of the sites. Whenever two colored sites are
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Fig. 1.4 A small portion of a
site percolation problem on a
triangular lattice. The circles
are sites. Supersites of a
real-space renormalization
are located at the centers of
the triangles shown. The line
drawn in is an aid to
measuring distances using
30-60-90 right triangles

nearest neighbors they can be considered to connect (as in the case of metallic balls,
which could conduct electricity between them if they were in contact). If a colored
site is neighbor to an uncolored site, or two uncolored sites are neighbors, then no
connection is made. A renormalization process can be developed, which constructs
a new lattice out of “supersites,” which replace groupings of three sites as shown.
A replacement of three sites by a single site must involve a rescaling of the length,
or distance between sites, by the factor 31/2. That result can be checked directly in
Fig. 1.4 by examining the geometry of the system; the line separating the new sites
forms the bisector of the vertex of the triangles, as shown, thus developing 30-60-90
triangles. The sides of these triangles are in the ratios 1, 31/2, 2. The ratio of the sep-
aration of supersites to that of the simple sites in the original lattice is 2 × 31/2/2.
If one moves just far enough away from the lattice that the new “supersites” are
exactly as far away from each other as the old simple sites, then the length scale
associated with the separation of sites has been reduced by 1/31/2.

Now consider how p changes with such a rescaling of the lattice. The approxi-
mation that is used here has been called “majority rule.” If either two or three sites
on the original lattice are colored in, the new site is colored in. Clearly, if all three
sites of the original lattice were colored in, a connection could be made across the
triangle in any direction, while if two sites are colored in, often a connection across
the triangle can still be made, though not in an arbitrary direction. If one or zero
sites are colored in on the original lattice, the new site is not colored in, because no
connection across the triangle can be made, and in most cases such a triangle will
interrupt the continuity of paths constructed across other nearby triangles. The new
probability, p′, of coloring in a site is thus constructed from the old probability, p.
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The above conceptualization is a very reasonable assumption, and nearly precise.
It basically means that if you can get across a given “supersite” from one side to
the other, presenting potential connections to new sites on both sides, it should be
colored in. Otherwise, it should not be. Mathematically this can be represented as,

p′ = p3 + 3p2(1 − p) (1.45)

The justification for this result is that the probability that all three sites are colored
in independently, each with probability p, is p3. The probability that two particu-
lar sites are colored in and the third is not is p2(1 − p). There are three possible
locations for the site, which is not colored in, justifying the factor 3. In the case
that p′ = p, the new lattice has precisely the same appearance and statistics as the
old, and p′ = p ≡ pc. If the substitution p′ = p is made in the above equation, it is
possible to rewrite the equation as,

−2p3 + 3p2 − p = 0 (1.46)

which can be factored as,

−p(2p − 1)(p − 1) = 0 (1.47)

The three roots of this equation are p = 0, p = 1/2, and p = 1. The existence of
the “trivial” roots p = 0 and p = 1 was predicted in Sect. 1.7 (obviously if all sites
or no sites are initially colored in, this condition will persist). The root p = 1/2
represents pc.

The divergence of the correlation length must be according to a power law as
discussed. The only reasonable form for this relationship is,

χ = χ0|p − pc|−ν (1.48)

where χ0 is a scale factor (obviously proportional to the original spacing of the
circles marking the fundamental lattice points), which need not concern us here
and ν > 0. The value of the critical exponent, ν, can be found through the above
renormalization by noting that −ν is the slope of a graph of the logarithm of χ vs.
the logarithm of p − pc. Thus, also for the above change of scale, take p slightly
different, e.g., larger than pc, p−pc = δ, where δ 
 1, and find the behavior of p′ −
pc as a function of δ. This kind of procedure is known as “linearization,” because it
will define only the lowest order variability in p′. Using Eq. (1.45) without equating
p and p′ (because if p > pc, then p′ > p) write p′ as,

p′ − pc = (pc + δ)3 + 3(pc + δ)2(1 − pc − δ) − pc (1.49)

and expand the result (again in a Taylor series) to first order in δ. The result (the
reader should verify this) is that p′ − pc = (3/2)δ. But since p − pc = δ by defini-
tion, one finds that,

ν = − log( 1
31/2 )

log( 3δ
2 ) − log(δ)

= log(31/2)

log( 3
2 )

= 1.355 (1.50)

Note that the value of pc for the site percolation problem on the triangular lattice is
precisely 1/2, while the value of ν is 4/3 = 1.333 and the estimate of Eq. (1.50) is
only wrong by 2 %.
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Consider now also the number of sites on a cluster of linear dimension given by
the correlation length. In the renormalization procedure the number of sites on an
arbitrary cluster is reduced by the following ratio,

s(p′)
s(p)

= p′3 + 3p′2(1 − p′)
3p3 + 2(3)p2(1 − p) + 3p(1 − p2)

= 1

3
(1.51)

if evaluated right at pc, i.e. p = p′ = 1/2. In Eq. (1.51) a standard result for the
average number of sites colored in on a given triangle is used, a sum over the
product of the probability of occupation and the number of occupied sites. How-
ever, if Eq. (1.51) is evaluated at p = pc + δ, where δ 
 1, one finds a ratio of
(1/3)(1 + (5/2)δ), which is slightly larger than 1/3. Equation (1.51) gives a first
estimate of the power σ in the cluster statistics, smax ∝ (p − pc)

−1/σ ,

1

σ
= − log( 1

3 )

log( 3δ
2 ) − log(δ)

= 2ν = 2.711 (1.52)

Equation (1.52) for σ cannot be quite right. Consider now these rough results in two
dimensions, namely ν = 1.355 and σ = 1/2ν = 1/2.711 in the context of the scaling
relationships. Use df = 1/σν to find df = d = 2! If the fractal dimensionality is the
same as the Euclidean dimensionality, then, by Eq. (1.24) just as in one dimension,
β = 0. Then Eq. (1.21) gives τ = 2 as well. In fact, however, σ > 1/2ν (and it turns
out that β = 0.14, not 0). While this difference is not great, and df = 1.9 for d = 2
(only slightly smaller than 2), the difference is obviously very important. So, while
the approximate renormalization procedure to find ν appeared at least in 1979 to
generate some hope that the value was accurate, in fact the result for the exponent
σ is sufficient to show that Eq. (1.50) is merely an approximation.

The statement above Eq. (1.52) that σ is slightly larger than 1/2ν, while correct,
cannot rigorously be based on the argument provided, since that argument does not
produce a consistent power, independent of the value of p. It will turn out that the
correct value of 1/σ is 91/36 = 2.53, or about 7 % different from the estimate.
While this difference is not large, it is critical.

1.18 Value of pc for Bond Percolation on the Square Lattice

Consider Fig. 1.5. The solid squares form a square lattice. Imagine that a fraction p

of the bonds (light lines) have been filled in at random as shown. Next construct the
square lattice denoted by the open squares, which are placed at the centers of the
individual squares formed by four neighboring solid squares. Imagine that a total of
q of the potential bonds on this lattice are connected (heavy lines). Each of these
square lattices has the same coordination number, Z = 4. Further, every potential
bond on each lattice intersects (blocks) exactly one bond on the other lattice, which
we can call a dual lattice. Thus p for the first lattice is precisely 1 − q for the other
lattice and p+q = 1. Given the two-dimensional nature of the lattices, however, it is
not possible that both can “percolate” simultaneously. Either one lattice percolates
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Fig. 1.5 A square lattice
(dark nodes and bonds) and
its dual (light nodes and
bonds), which is also a square
lattice. Note that the bonds of
the dual lattice percolate

or the other does. Given the identical natures of the two lattices, however, it does not
make sense for pc > qc, or for pc < qc. The only alternative is to choose pc = qc =
1/2. The fact that the square lattice is its own dual lattice means that its percolation
probability must be 1/2. The product of Zpc for this lattice is 2. Miyazima [29] has
constructed an analogous argument to find pc = 1/2 for bond percolation on a four
dimensional hypercube (and extended the derivation to 2n dimensions).

1.19 Estimations of pc for Bond Percolation on the Triangular
and Honeycomb Lattices

Consider Fig. 1.6. It includes a honeycomb lattice of solid squares (Z = 3) and
a triangular lattice of open squares (Z = 6), which are fully complementary (or
each other’s duals), as were the two square lattices above. Thus every bond that is
connected on the triangular lattice would “break” a bond on the honeycomb lattice
and vice-versa. This means that if no bonds from one lattice are allowed to cross
bonds from the other one, the bond probability p on the triangular lattice is 1 − q ,
with q the bond probability on the honeycomb lattice and p = 1 − q . The light lines
represent bonds on the triangular lattice, while the heavy lines represent bonds on
the honeycomb lattice. As is generally true in two dimensions, either the triangular
lattice percolates, or the honeycomb lattice percolates, but not both simultaneously.
In the figure the triangular lattice percolates. The result p + q = 1 together with the
exclusionary result on the two percolation probabilities implies that pc +qc = 1. But
the result from Sect. 1.13 that pc ∝ 1/Z implies that qc = 2pc. (pc ∝ 1/Z implies
that the quantity Zpc is a constant, which turns out to be a good approximation).
Simultaneous solution of these two equations yields pc = 1/3, qc = 2/3. Note that
these estimates for pc are both consistent with the relationship Zpc = 2, but the
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Fig. 1.6 A triangular lattice
(dark nodes and bonds) and
its dual (gray nodes and
bonds). The dual, a
honeycomb lattice, percolates

exact results are pc = 0.3473, qc = 0.6527, for which values zpc = 2.08 and 1.96,
making this product only an approximate invariant. Vyssotsky et al. [51] suggested
that the product Zpc should take on the values d/(d − 1), for d ≥ 2, and such an
approximate invariant as this can be quite useful if a system, for which pc is not
known and cannot be readily calculated, is encountered.

1.20 Summary of Values of pc

In general, in a given lattice, a bond has more nearest neighbors than a site. In the
square lattice one bond is connected to six nearest neighbor bonds, while a site
has only four nearest neighbor sites. Thus large clusters of bonds can be formed
more effectively and a lower concentration of bonds is needed to form a spanning
cluster, i.e., pc for bonds is lower than for sites. For the smallest system possible,
four squares, the critical percolation probability is 3/4 for site, but 1/2 for bond
percolation. Here, the ratio of pc bond to pc site is exactly 2/3 = Zsite/Zbond. For
infinite sized systems the ratio of critical percolation probabilities is not so simply
related to the coordination numbers.

The known results for pc are summarized in Table 1.1. The four cases, for which
simple approximations are known and repeated above are noted. These four cases
correspond also to the only exact values of pc known.

All the estimated bond pc values given are exactly consistent with the Vyssot-
sky et al. [51] relationship above, though, when compared with the most accurate
determinations of pc that relationship gives values that are accurate only to within
about 4 %.

Some of the references for the above values include: Kesten [24] and Essam
et al. [16] (triangular bond, honeycomb and triangular site, square bond), Sykes and
Wilkinson [49], Adler et al. [1] (bcc bond, simple cubic bond), Ziff and Sapoval [53]
(square site), Stauffer [46] (bcc site, fcc site, fcc bond, honeycomb site), Strenski
et al. [48] (simple cubic site).
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Table 1.1 Tabulated values of pc

Lattice type z pc bond Estimated pc Zpc pc site (est.)

Honeycomb 3 1 − 2 sin(π/18) 2/3 1.96 0.6962

Square 4 1/2 1/2 2 0.5927

Triangular 6 2 sin(π/18) 1/3 2.08 1/2 (1/2)

Diamond 4 0.3886 1.55 0.4299

Simple Cubic 6 0.2488 1.49 0.3116

BCC 8 0.1795 1.44 0.2464

FCC 12 0.119 1.43 0.199

1.21 More General Relationships for pc

Some relationships for pc are mentioned, which may help guide estimations in more
complex, but more realistic models.

The lattice structures mentioned so far by no means exhaust the types investi-
gated, and the Vyssotsky relationship is useful only for bond percolation. Galam
and Mauger [21] have developed a more general relationship for pc of the following
form, pc = p0[(d − 1)(q − 1)−adb]. For regular lattices, q = Z, the coordination
number. For non-periodic tilings, q is an effective value of Z. The relationship is
considered to be valid for anisotropic lattices with non-equivalent nearest neighbors,
non-Bravais lattices with two atom unit cells and quasi-crystals. The biggest strength
of the relationship, however, may be that it can be applied to both site and bond per-
colation problems. In the former case, b = 0, while in the latter b = a. The biggest
weakness is probably that the known systems fall into two classes, each with differ-
ent values of p0 and a. The first class includes 2-d triangle, square and honeycomb
lattices with a = 0.3601 and p0 = 0.8889 for site percolation and a = 0.6897 and
p0 = 0.6558 for bond percolation. Two dimensional Kagome and all (hyper)-cubic
lattices in 3 ≤ d ≤ 6 constitute the second class with a = 0.6160 and p0 = 1.2868
for site and a = 0.9346 and p0 = 0.7541 for bond percolation, respectively. But in
order to use these results to predict pc, one must know to which class of lattice a
particular system belongs. Nevertheless it is important here to provide guidance for
prediction of pc in new system geometries.

Finally we come to the result of Scher and Zallen [38] for the critical volume
fraction for continuum percolation. Such results have the potential to be of great
use in percolation problems in porous media. Scher and Zallen [38] found that for
regular lattices the critical occupied volume fraction,

Vc = pcf (1.53)

where pc is the critical bond fraction, and f is the filling factor (the fractional vol-
ume covered) of a lattice when each site of the lattice is occupied by a sphere in
such a way that two nearest neighbor impenetrable spheres touch one another at one
point. For a simple cubic lattice the value of this product is 0.163, and in fact the
value of this product for all the lattices considered scarcely differed from 0.17. Note
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that an analogous model (with different shaped objects) could have direct relevance
to porous media with f replaced by the porosity, and there is indeed evidence for
the applicability of Eq. (1.53) in this context.

Shante and Kirkpatrick [39] generalized this idea to overlapping spheres, and
showed that the average number, Bc, of bonds per site at pc (equal to the product of
Zpc) is related to the corresponding critical volume fraction by,

Vc = 1 − exp

[−Bc

8

]

(1.54)

Note that the choice of Bc = 1.5 for three dimensions yields Vc = 0.17. This result
is generalized to an arbitrary continuum of spheres by choosing Bc to be the limiting
value of pcZ in the limit Z → ∞. Values of Vc on the order of 0.17 have often been
suggested to be relevant to real media. Balberg [4] has developed these ideas further,
finding,

Vc = 1 − exp

[−BcV

Ve

]

(1.55)

where V is the volume of the object and Ve is the excluded volume, i.e., the total
volume in which the center of a neighboring volume of the same shape cannot be
located without overlapping. For spheres this ratio is (4/3)πr3/(4/3)π(2r)3 = 1/8,
in agreement with the result of Shante and Kirkpatrick [39].

For results for the critical volume fractions for percolation for a number of
anisotropic shapes one can also consult the following web page http://ciks.cbt.nist.
gov/~garbocz/paper59/node12.html#SECTION00050000000000000000 (geomet-
rical percolation threshold of overlapping ellipsoids, [23]). These values may be of
considerable use in geologic applications, at least to guide conceptualization. In par-
ticular, the critical volume fraction for percolation has a strong tendency to diminish
for increasing shape anisotropy.

Problems

1.1 Show that at arbitrary p the largest clusters have cluster radius rs = sσν , and
argue then that for arbitrary p and arbitrary s, rs = sσνg[sσ (p − pc)], where g

is an unknown function. Does your result for rs imply an effective dimension
of the clusters?

1.2 Derive Eq. (1.50) from Eq. (1.49).
1.3 Derive Eq. (1.42) from Eq. (1.41).
1.4 The critical exponent α is defined through the singular contribution to

∑
s0ns ∝

(p − pc)
2−α . Find α in terms of known exponents using the results of develop-

ment of (1.14) and an analogy to Eq. (1.16).
1.5 The critical exponent γ is defined through the singular contribution

∑
s2ns ∝

(p − pc)
−γ . Find γ in terms of known exponents.

1.6 Show explicitly that Eq. (1.30) results from Eq. (1.29).

http://ciks.cbt.nist.gov/~garbocz/paper59/node12.html#SECTION00050000000000000000
http://ciks.cbt.nist.gov/~garbocz/paper59/node12.html#SECTION00050000000000000000
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1.7 Verify the scaling relationships for the critical exponents in 1-d, 2-d, and 6-d.
Do you expect them to be precisely satisfied in 3-d (where the exponents may
not ever be represented in terms of rational fractions)?

1.8 Show that, for one-dimensional systems, definition of χ as

χ =
∑∞

r=1 rpr

∑∞
r=1 pr

leads to χ = p/(1 − p) instead of χ = (p + 1)/(1 − p) as obtained from
Eq. (1.5). How would you characterize the sensitivity of the scaling behavior
of the correlation length relative to the details of its definition?

1.9 The sum in Problem 1.4 has been argued to describe, for a magnetic system,
the free energy, while P (the first moment) corresponds to the magnetization,
and the sum in Problem 1.5 (the second moment) to the susceptibility. Find an
argument for why an increase in the moment of the cluster distribution by one
corresponds to a derivative with respect to the applied field.
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Chapter 2
Properties Relevant for Transport
and Transport Applications

This chapter describes aspects of percolation theory that can be used to predict trans-
port properties of disordered systems. Topics are selected to provide a basis for un-
derstanding subsequent applications to porous media, and are thus not meant to be
exhaustive. Still, there will at times be hints to subjects that may have relevance to
problems not yet considered within the present framework.

2.1 Exponents Describing Backbone Structure

The structure of the backbone is important to such issues as distributions of arrival
times of passive solutes (simply carried along by fluid flow). The resulting disper-
sion is an inevitable aspect of transport, and is frequently of great practical interest.
In the soil physics and hydrology literature it is customary to distinguish between
“transport” properties (including conduction) and flow properties. In the physics
literature all these properties fall under the category of transport.

A number of related properties of the infinite cluster have been investigated in
the context of solute dispersion. The mass fractal dimensionality of the backbone
cluster is denoted by Db. This fractal dimensionality has the same fundamental def-
inition as that of percolation clusters generally, but its value lacks the universality of
the percolation cluster. In other words the backbone cluster topology can differ sig-
nificantly depending on whether the percolation model is invasion or random, site or
bond and whether the local site or bond probabilities are correlated with each other.
The chemical path [30] is the shortest path length between two sites on a large clus-
ter near percolation. Defining travel lengths and times that incorporate measures of
the tortuosity of the backbone cluster makes sense in the context of solute transport
through porous media, when such solutes are carried passively through percolation
structures. The tortuosity of the backbone cluster has been studied since the 1970s.
Although later works showed the need to generate greater breadth of classification,
the initial way to characterize this tortuosity was to give the length of the shortest
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path, Λ, along the backbone cluster as a function of p and pc. Stauffer [39] gives
this length as follows,

Λ ∝ |p − pc|−η (2.1)

with η = 1 the value of the associated critical exponent (in three dimensions). In fact,
the “value” of this exponent has been growing over the last 30 years [15, 36], but any
value greater than 0.88 implies that the ratio of the (tortuous) path length to the size
of the largest cluster is divergent at p = pc, meaning that the path becomes infinitely
tortuous at the percolation threshold. Thus the tortuosity, T , may be defined as the
ratio Λ/χ , or,

T =
(

Λ

χ

)

= |p − pc|ν−η (2.2)

The value of this exponent can be related to the fractal dimensionality, Dmin, of an
optimal chemical path along the backbone by using the defining equation of fractal
dimensionality from Mandelbrot [25]. For a path constructed of steps of length ε,
the dimensionality is fractal (and larger than 1) if the total length of the path, L,
diverges in the limit that ε approaches zero. In particular, Dmin is given by

L(ε) = ε1−Dmin (2.3)

We can use this expression to relate Dmin to η. As the percolation threshold is ap-
proached the correlation length, χ , diverges, whereas the individual step lengths
(bond dimensions) are constant. But we can simply rescale the picture by reduc-
ing the lengths of the individual steps inversely proportionally to the correlation
length. This process maintains the physical size of the cluster but increases the de-
tail at which the cluster is drawn, corresponding to Mandelbrot’s definition. Thus
ε ∝ χ−1, and

T ∝ (|p − pc|ν
)1−Dmin = |p − pc|ν−νDmin (2.4)

which yields η = νDmin.
The mass fractal dimensionality of the backbone cluster, Db [24], appears to be

more appropriate in relating the time of travel along such a backbone to the linear
extent of the cluster. Thus the time of travel is not simply proportional to the length;
it turns out to be even longer than what would be simply predicted by making it
proportional to the tortuous length. Further, this time can depend strongly on the
type of percolation problem considered.

The argument of Lee et al. [24] is as follows. For particles entering a backbone
cluster at one side of a system, the typical velocity v at distance x will scale as 1/n,
where n is the number of bonds at distance x. The number of bonds at distance x is
proportional to x−1+Db . Thus the typical travel time t is

t ∝
∫

dx

v
∝

∫

dxx−1+Db = xDb (2.5)

Lee et al. [24] do in fact find from simulations in two dimensions that the typical
time, t , that a particle takes in traversing a Euclidean distance x scales as the 1.62
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Table 2.1 Fractal
dimensionalities associated
with chemical path lengths
and the backbone percolation
cluster in three dimensions
(from [36])

Model Dmin Db

Site NTIP 1.37 1.87

Site TIP 1.37 1.86

Bond TIP 1.46 1.46

RP 1.37 1.87

Optimal path 1.43 1.42

Table 2.2 Fractal
dimensionalities associated
with chemical path lengths
and the backbone percolation
cluster in two dimensions
(from [36])

Model Dmin Db

NTIP 1.1293 1.6422

Site TIP 1.214 1.217

Bond TIP 1.217 1.217

RP 1.1307 1.6432

Optimal paths 1.21 1.21

power of x, very close to the value of Db = 1.6432 found by Grassberger [14]
for the backbone cluster in two dimensions, but nowhere near the value, 1.217, for
optimal paths (see Table 2.2). Thus a kind of temporal tortuosity factor is given in
the same form as Eq. (2.4) but with Db substituted for Dmin. Such a result will have
considerable importance for the discussion in Chap. 11.

Sheppard et al. [36] give values for the mass fractal dimensionality of the sample-
spanning cluster and the backbone, Db, as well as the fractal dimensionality of the
optimal path, Dmin, in various percolation models. Presenting the basic information
from their summary (Tables 2.1 and 2.2) requires defining their acronyms: IP =
invasion percolation, TIP = trapping invasion percolation, NTIP = non-trapping
invasion percolation, and RP = random percolation (the focus here). The difference
between trapping invasion percolation and non-trapping invasion percolation is that
in the former case the “defending” fluid (defending against the “invading” fluid) is
incompressible, meaning that it can be trapped (in finite clusters). In the latter case,
the defending fluid can always escape, even if it does not percolate, since it can be
compressed to zero volume.

In the present case for our dispersion calculations (Chap. 11) we have used sev-
eral values of the exponent Db. These values for the fractal dimensionality each lead
to distinct values for the exponent η.

2.2 Exponents for Conduction Properties

Consider the site percolation problem introduced in Sect. 1.2, and stipulate for sim-
plicity that all the metallic balls are of the same size and composition. Allow them
to be placed on a simple cubic lattice. We have not calculated pc for this lattice,
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but numerical simulations give the result pc = 0.3116. Thus, in an infinite lattice,
if fewer than 31.16 % of the balls emplaced are conducting and the remainder are
insulators, the system will not conduct at all. If p > pc, the system will conduct.
Clearly the conductivity of the system must follow a functional form, which van-
ishes (rather than diverges) at p = pc = 0.3116. The result of percolation theory is
that the functional form must be a power law (and the arguments given here justify
that); what we need to do is predict the exponent.

The most important aspects of this problem treated by percolation theory are
probably the connectivity and the tortuosity of the conducting paths, concepts which
have been independently (but inconsistently) developed in the porous media com-
munities. Discussions of this topic have occupied a great deal of literature but, as
will be seen, the original discussion of Skal and Shklovskii [38] is the simplest intro-
duction, although it does not lead to the most widely accepted result. The following
is consistent with the general results of that work.

The electrical conductivity of a system is defined as the ratio of the current per
unit area and the applied electrical field. If this ratio is independent of the field
(as is normally the case at small field strengths), the system obeys Ohm’s law. The
current per unit area in the present case involves both the current per path, and the
number of connected paths per unit area. The simplest assumption is that the current
for each connected path is identical. Then the number of connected paths per unit
cross-sectional area (in three-dimensions) is proportional to

χ−2 ∝ (p − pc)
2ν (2.6)

Since in three dimensions, ν = 0.88, the lowest order estimate of the conductivity is
that it should vanish as the 2ν = 1.76 power of p − pc. This suggestion is actually
fairly close to observation. But the structure of large clusters near the percolation
threshold, and by extension the infinite cluster just above the percolation threshold,
is fractal for distances below the correlation length (which of course diverges at per-
colation). This fractality produces a tortuosity in the current-carrying path as well.
The distance along a connected path, Λ, over a separation equal to the correlation
length is actually longer than the correlation length. Specifically, Λ diverges at the
percolation threshold according to [39]

Λ ∝ (p − pc)
−νDmin (2.7)

Thus, assuming that the resistance of the current-carrying path is just the sum of
the resistances of all the metal balls encountered, this resistance per unit system
length must actually increase as the percolation threshold is approached, with the
increase given by the ratio Λ/χ . This ratio is proportional to (p − pc)

ν−νDmin =
(p −pc)

−0.33 (using the value for Dmin for random percolation, Table 2.1). Such an
increase in resistance alters the conductivity to

σ ∝ (p − pc)
2ν+(Dminν−ν) = (p − pc)

2.09 ≡ (p − pc)
μ (2.8)

Here the first contribution to the exponent is essentially a result of the connectivity,
or separation of the paths along which current can flow, while the second contribu-
tion is due to the tortuosity of these paths. The combined exponent is thus the sum
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of two contributions, 1.76 + 0.33 = 2.09 = μ. At the time of the original estimate
by Skal and Shklovskii [38], it was thought that η = 1, which leads to μ = 1.88.
Nowadays, μ is known at least as accurately as are the constituents that distinguish
μ from 2ν, and more modern publications [7, 13] give μ = 2. As pointed out by
Berkowitz and Balberg [5], the explanation for the discrepancy μ = 2 instead of
μ = 2.09 is quite simple. The discussion up until now has omitted the effects on μ

of the “blobs,” or finite length parallel paths. But the fact that such blobs become in-
creasingly complex and numerous in the limit of p → pc leads to a reduction in the
resistance of the backbone cluster, meaning that μ is reduced from 2.09. The pre-
sentation of this argument is meant more to provide extra qualitative understanding
than to imply a quantitative inference on the effects of these “blobs” on conductivity.

In two dimensions the Skal and Shklovskii [38] argument would start with μ ≈ ν

rather than 2ν, because the relevant current density is defined relative to a perpen-
dicular length (χ ) rather than a cross-sectional area (χ2). Then complications due to
a tortuosity would be added. But the exponent μ appears to be smaller in magnitude
than ν, making the argument of Skal and Shklovskii [38] more difficult to apply.
As Berkowitz and Balberg [5] explain, the structure of the backbone cluster in 2D is
different enough to make blobs a more important modification to μ than the tortuos-
ity. As a first approximation to μ one can simply use the exponent for the correlation
length, ν = 1.33. Derrida and Vannimenus [8] find that the value of μ in two dimen-
sions is 1.28, while Jerauld et al. [19] find μ = 1.27, and Normand and Herrmann
[29] find μ = 1.30. But none of these values for μ in two dimensions differs much
from the two-dimensional value for ν. Establishing values for μ will have relevance
to (for example) discussions of Archie’s law for the electrical conductivity of porous
media. This is why it is important to find the best values for these exponents, as well
as to determine the conditions under which one expects to observe them. The value
for μ in two dimensions (three dimensions) will be assumed here to be 1.3 (2.0).

In one dimension, the conductivity is either zero (if there are any non-conducting
elements at all), or a finite value, implying μ = 0. But generally μ is non-universal
for one-dimensional systems, meaning that in principle any value of μ can be gen-
erated. If there is a variation in the conduction properties of the individual elements
(not all resistance values identical), the result pc = 1 implies that the total resis-
tance may be dominated by the resistance of the most resistive element in one di-
mensional systems. In that case the conductivity is calculated using extreme value
statistics. The choice of the extreme value statistic is determined by the statistics of
the individual resistances, making one-dimensional systems highly non-universal.

Although the concept of conductivity and the discussion of the value of μ were
introduced in the context of electrical conduction, the arguments are perfectly gen-
eral, and the results could instead be applied to, e.g., the hydraulic conductivity or to
air flow. What will turn out to differ among these properties is the conditions under
which arguments to invoke Eq. (2.8) actually apply.

Berkowitz and Balberg [4] explicitly demonstrated that models of hydraulic con-
duction yield Eq. (2.8) for the hydraulic conductivity near the percolation threshold,
and found values of the exponents compatible with μ = 2 in 3d and μ = 1.3 in 2D.
However, they also found results compatible with non-universal exponents [10, 35]
in certain 3d systems.
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The Einstein relationship [32] relates diffusion, D, and conductivity, σ , via the
number of charge carriers n:

σ = nD (2.9)

where we assume that n is given by the fraction of sites connected to the infinite
cluster. From this relationship we find

D ∝ (p − pc)
μ−β (2.10)

The following summary is from ben-Avraham and Havlin [2], and will be important
when we address diffusion in Chap. 7. The average diffusion constant near and
above the percolation threshold and at very long times, for which the root mean
square excursion R = [〈R2(t)〉]0.5 of the walks not restricted to the incipient infinite
cluster is much larger than the percolation correlation length, is

D(t → ∞,p) ∼ (p − pc)
μ (2.11)

Equation (2.11) includes diffusion in all clusters of the system unrestrictedly. We
will show that experimental results conform to Eq. (2.11).

Meanwhile, at the percolation threshold the average diffusion constant follows

D(t,pc) ∼ t (2−dw)/dw (2.12)

where dw is the random walk fractal dimension. And finally, below the threshold we
find

D(t → ∞,p) ∼ t−1(pc − p)−2v+β (2.13)

For the restricted ensemble, consisting of only the incipient infinite cluster,
Eqs. (2.11) and (2.13) change to

D(t → ∞,p) ∼ (p − pc)
μ−β, p > pc (2.14)

and

D(t → ∞,p) ∼ t−1(pc − p)−2v, p < pc (2.15)

but Eq. (2.12) remains the same. Curiously, a simple effective-medium theoretical
result [20] yields D ∝ (p − pc)

1, which has been alleged (as p(p − pc)) to occur
in soils [27]. However, typical conditions in porous media make it very difficult to
distinguish the Moldrup et al. [27] result from universal scaling predictions, and
we argue (Chap. 7) that overall the relevance of universal scaling is best supported.
Nevertheless, both on account of this coincidence, and because in fact the effective-
medium relationship does hold for p−pc > 0.8, the essence of the Keffer et al. [20]
derivation is repeated here.

The lowest order effective medium approximation for the mean diffusivity, Dm,
can be obtained via physical arguments [21, 22] or via lattice Green functions [33]
as [20]

∫ ∞

0

Dm − D

(Z
2 − 1)Dm + D

f (D)dD = 0 (2.16)
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for mean coordination Z. Keffer et al. [20] use as a distribution of diffusivities (to
describe ultimately the diffusion in zeolites),

f (D) = pδ(D − Db) + (1 − p)δ(D − D0) (2.17)

where Db is a very small value and D0 is relatively large, and for which these
authors define f ≡ Db/D0. We caution that these authors made the unusual (and
confusing) choice to use the symbol p for the low diffusion elements! The solution
of Eq. (2.16) using Eq. (2.17) for f (D) is,

Dm

D0
= 1

2

{

A +
[

A2 + 4f

Z
2 − 1

] 1
2
}

(2.18)

where

A = 1 − p + fp − f + p − fp

Z
2 − 1

(2.19)

For the case f = 0, Eq. (2.19) yields

Dm

D0
= (Z

2 − 1) − (Z
2 )p

(Z
2 − 1)

= (1 − p) − 2
Z

1 − 2
Z

(2.20)

which would seem to yield pc = 1−2/Z and a critical exponent of 1. But in another
confusing choice these authors exchanged the roles of p and 1 − p, so the actual
result obtained for pc is Zpc = 2. This would be in agreement with the results of per-
colation theory except that the constant, 2, is more appropriate for two-dimensions,
rather than for the three-dimensional configurations considered. With the transpo-
sition noted, Eq. (2.20) becomes Dm/D0 = (p − pc)/(1 − pc)! Note also that the
conclusion that the critical exponent is 1 is unaffected by the transposition of p and
1 − p.

In this third edition we will show that nearly all diffusion results in porous me-
dia actually conform to Eq. (2.11), eliminating a significant uncertainty in earlier
editions.

2.3 Summary of Derived Values of Critical Exponents

While most of the entries in Table 2.3 refer to quantities discussed in Chap. 1, it is
not presented there because of its inclusion of the conductivity exponent, μ.

Table 2.3 was constructed synthesizing the tabulated values for these exponents
from Sahimi [32] and Stauffer [39], but using μ = 2.0 in three dimensions [7, 13]
and μ = 1.3 in two dimensions [29]. Known values, for which the derivations were
described here, are underlined and in bold; if the values obtained here are different
from the known values, they are given in parentheses.
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Table 2.3 Values of critical exponents

Exponent d = 1 d = 2 d = 3 d ≥ 6

α 1 −2/3 −0.62 −1

β 0 5/36 0.41 1

γ 1 43/18 1.82 1

σ 1 36/91 = 0.396 (0.369) 0.45 1/2

τ 2 187/91 2.18 5/2

ν 1 4/3 (1.355) 0.88 1/2

μ Not universal 1.3 (1.355) 2.0 (1.88) 3

2.4 Finite-Size Scaling and Fractal Characteristics

Numerical simulations are a common means to generate values of both pc and of
critical exponents in percolation theory. But simulations can be performed only for
finite-sized systems. While it is possible to try to extract limiting behavior in the
infinite system limit as a means to generate such quantities, a better approach is
to generate dependences of, e.g., the conductivity on the system size, then use a
known transformation to yield the associated dependences on percolation variables.
This technique is often used for treating transport problems. For example, quantities
like the conductivity, which vanishes at the percolation threshold, will diminish with
increasing system size until the linear dimension of the system exceeds the correla-
tion length. At larger length scales the system is known to be Euclidean, meaning
that the property in question becomes independent of system size. The exception
of course is right at the percolation threshold, for which the correlation length is
infinite and the scale dependence continues to infinite system size.

Originally it was Fisher [11] who showed how to relate percolation quantities for
finite sized systems to their behavior as a function of p − pc in the limit of infinite
sized systems. In particular, for a system of finite size L, a percolation quantity ψ ,
which obeys an arbitrary power law (p − pc)

q0 , will behave as

ψ ∝ L− q0
ν h

[(
L

χ

) 1
ν
]

= L− q0
ν h

(
L

1
ν (p − pc)

)
(2.21)

with h an unknown non-singular function. Substitute L = χ into Eq. (2.21) to ob-
tain,

ψ ∝ (p − pc)
−ν

−q0
ν h[1] = (p − pc)

q0 (2.22)

Note that Eq. (2.21) is similar to Eq. (1.8) for the cluster statistics. In particular, the
ratio of L to the correlation length enters here, because systems near the percola-
tion threshold obey fractal geometry (with e.g., fractal cluster dimensions) only for
length scales smaller than the correlation length. For length scales larger than χ the
system follows Euclidean geometry. For example, if a system with p > pc is smaller
than the correlation length, the above finite-size scaling results hold, and transport
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quantities (e.g., diffusion constant or conductivity) will trend to zero with increasing
system size up to a length scale equal to the correlation length. But at larger system
sizes, the transport coefficient will remain constant with any further increase in sys-
tem size. Only precisely at pc will the behavior of the transport coefficient continue
to diminish indefinitely with increasing system size. But on the way to p = pc, the
transport coefficient has taken on values at each size, which were equal to the trans-
port coefficient at that value of the correlation length. Therefore the first factor in
Eq. (2.21) gives the behavior of the variable ψ for the condition L = χ , since the
second factor does not change with L where L is constrained to equal χ . Thus any
such exponent obtained from finite-size simulations (and presented as a function of
system size, L) must be multiplied by −ν to find the value predicted by percolation
theory. The similarity of Eq. (2.21) to Eq. (1.8) is a consequence of the relevance
to percolation scaling of homogeneous functions, a topic not considered here but
treated in the standard references mentioned earlier in this chapter.

2.5 Scaling Far from the Threshold

In most applications in this book we can restrict our attention either to critical path
analysis (Sect. 2.6) or the asymptotic results from percolation theory above. But we
will see that in the case of the thermal conductivity, measurements are taken so far
from the percolation threshold that the asymptotic results no longer apply. In ad-
dition, we will find that for the gas diffusion, the normalization factor used in the
reporting of the data is determined at porosity 1, also so far from the threshold that a
roughly 30 % inconsistency in a purely numerical factor is introduced. Both of these
difficulties are removed if we refer back to Kirkpatrick [22]. There it was determined
that the percolation scaling of (p − pc) was most accurate to about p = 0.8 ≡ εx.
Above this value of p, he showed that a linear dependence in p − pc was superior,
a result that derived from effective medium theories and given in Eq. (2.25). We
show what form of the conductivity results in Fig. 2.1. Note that for electrical con-
ductivity, solute and gas diffusion, and air permeability, the largest value of p ever
investigated is equal to the porosity, which is typically no greater than 0.6, meaning
that the complication is never observed directly. However, in the case of the ther-
mal conductivity, where the solid portion of the medium is at least as conducting
as the water, the typical case of ϕ = 0.4 means that the observed moisture depen-
dence investigates values of p between 0.6 and 1. This means that the cross-over
from the quadratic to the linear dependence will show up in the middle of the range
of investigated values. Note that the prefactor, (1 − εt)(εx − εt), in the percolation
scaling term is about 1.28 for the typical value of εt = 0.1ϕ. At the time of Kirk-
patrick’s analysis, the scaling exponent μ appeared to take on the value of 1.6. It is
now known to be 2. This change in exponent value would force the cross-over to
take place at a somewhat lower value of ε, requiring a numerical constant somewhat
larger than 1.28. Since these changes would be relatively small, however, we have
deferred any investigation to a later time.
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Fig. 2.1 Actual conductivity
in three dimensions as a
function of p, as compared
with the assumption of the
validity of percolation
scaling. The sharp cross-over
at p = 0.8 is an artifact of the
need to choose the
effective-medium result
(Eq. (2.20)) for p > 0.8 and
percolation scaling
(Eq. (2.11)) for p < 0.8. In
actuality we expect a
smoother cross-over

2.6 Critical Path Analysis

Although an entire chapter is devoted to Critical Path Analysis (CPA), its introduc-
tion here serves to familiarize the reader with its basic concepts. This introduction
addresses more general issues, such as effects of the dimensionality of the system,
the connectivity of the medium, and the width of a distribution of local conduc-
tances, while Chap. 5 treats detailed applications of CPA to systems of experimental
relevance.

CPA uses percolation theory to calculate effective conduction properties of a dis-
ordered medium. CPA was developed [1, 12, 31] to find the limiting resistance value
in a random medium with a wide range of local resistances. The initial work was
meant to address the electrical conduction problems of impurity conduction sys-
tems in crystalline semiconductors as well as amorphous semiconductors, and so
topological disorder was included. The present introduction, however, concentrates
on lattice models. Because the connectivity of the more highly conductive regions
is a critical input into the calculation of effective properties, the fundamental the-
ory of connectivity is an obvious tool to be employed for such a calculation. Then
it is not necessary to add connectivity as an afterthought, or to develop alternative
methods to quantify connectivity, such as the Euler number [28]. While the latter
has an advantage in that it can be used to identify a percolation transition [28], i.e.,
when the Euler number changes sign the system crosses pc, its disadvantage is that
there is no known relationship between the Euler number and p. Thus there is no
way to express (p − pc) in terms of Euler numbers, making it impossible to use the
Euler number to predict any properties given in percolation theory. Two additional
advantages of critical path analysis are that it can be applied to any conductance (or
conductivity) distribution, and that it yields results which are most accurate (exact)
in the limit of large disorder rather than in the limit of a homogeneous system (al-
though in many cases critical path analysis can be formulated to be exact in both
limits).

The gist of critical path analysis is that it defines that interconnected network
of conductances which has the largest possible value of the smallest, or bottleneck,
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conductance. This value, called the critical conductance, is found by setting an in-
tegral over the conductance distribution equal to the critical percolation probabil-
ity, pc. The lower limit of this integral is the critical conductance, and the upper limit
is the largest conductance. The analysis can be formulated equivalently in terms of
a resistance distribution, for which pc fixes the upper limit of integration while the
lower limit is the smallest resistance in the distribution. In critical path analysis pc
is thus the most important parameter, rather than the critical exponents. The criti-
cal percolation probability can vary significantly from system to system. Thus there
might be important differences in applying critical path analysis in different sys-
tems. Important differences do exist in applying critical path analysis in different
dimensions.

2.6.1 Relation of Critical Path Analysis to Extreme Value Statistics
in 1D Systems

Consider first the case of one-dimensional systems. In infinite one-dimensional sys-
tems the conductivity can always be calculated exactly using what is often called
the harmonic mean value of the conductance distribution. This value is related to
the inverse of the sum of the resistance values, since the effective resistance of re-
sistances in series is their sum. For uniform size characteristics (all bonds the same
length, for example) the resistance distribution is a perfect proxy for the resistivity
distribution, because the resistance of any bond is some constant times its resistiv-
ity. For a wide distribution of resistance values, the harmonic mean is dominated by
the largest resistance in the system. For a truncated power-law distribution of resis-
tances, W(R), the harmonic mean conductivity is in fact proportional to the largest
resistance value, at least as long as RW(R) is a power of R that is greater than −1.
This is simply a property of power-law distributions, and may easily be verified
by integration (Problem 2.4). Since pc = 1 in one dimension, critical path analysis
requires that the lower limit of integration on the conductance distribution be the
smallest conductance in the system (or the largest resistance). In other words it is
not possible to connect an infinite path which avoids even the smallest conductance.
A single missing element will break the path. Thus critical path analysis quickly
reaffirms the relevance of the largest resistance to the system conductivity. For a
power-law resistance distribution that extends to infinite resistance the conductivity
is zero. In general the conductivity in 1D is given by σ = l/R, with l the system
length and R its total resistance.

In finite-length one-dimensional systems, the problem is more interesting. Again,
since in 1D we have pc = 1, the critical conductance gc is now the smallest actual
conductance in the system, rather than the smallest allowed by the distribution. Since
it is impossible to avoid even the largest resistance on the path, but this largest resis-
tance can vary from realization to realization, extreme value statistics are implicated
in the procedure to find both an ensemble mean conductivity of the system, and a
distribution of conductivity values, as a function of the system length. To find an
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ensemble mean conductivity it is necessary first to find the dependence on x of the
largest expected resistance value, Rmax(x) in a system of length x. If Rmax(x) is
a power of x, then evaluation of the limit of x/Rmax(x) for x approaching infinity
gives the scaling of the conductivity as a function of length, x. In such cases, the
limiting value of x/Rmax(x) as x approaches infinity will typically be zero, so that
an infinite system does not conduct at all. This is the case in the spatially random
hopping conduction system considered below. Whenever the system has a non-zero
minimum conductance value, however, the typical resistance of a system of length x

is proportional to x, and the system conductivity is non-zero and well-defined.
The following specific system, r-percolation, is discussed in considerably more

detail in Sect. 4.1. Here we only give the briefest summary sufficient to actually
perform the calculations. Consider a one-dimensional system with resistances con-
necting every pair of sites, i and i + 1, where i denotes the position of a site on a
linear chain. Let the separation of the sites ri,i+1 be a random variable with uniform
probability density, 1/b, where b is the typical separation of sites. Let the resistance
Ri,i+1 = R0 exp[2ri,i+1/a], where a 
 b and R0 are constants with units length and
resistance, respectively. While the probability of finding an arbitrary site a distance
r (within dr) from site i is dr/b, the probability that site is the nearest neighbor is
(dr/b) exp(−r/b). This probability is normalized over the interval [0,∞]; the near-
est neighbor must be somewhere. Now what is the largest likely value of the nearest
neighbor distance in a chain of length x? First, the expected number of sites on
such a chain is x/b. Thus the number of possible realizations of the nearest neigh-
bor distance is proportional to x/b. This means that the total area under the curve
exp(−r/b)/b would typically be divided into x/b roughly equal areas, meaning
that the largest expected resistance value, Rmax = R0 exp[2rmax/a], would be found
by setting the area under the extreme value distribution between rmax and infinity
proportional to b/x:

b

x
∝

∫ ∞
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b
exp

[−r

b

]

(2.23)

Solution of this integration for rmax in terms of x gives

rmax ∝ b ln

(
x

b

)

(2.24)

Substitution into Rmax = R0 exp[2rmax/a] leads to

Rmax ∝ R0

[
x

b

] 2b
a

(2.25)

with the result that

σ(x) ∝ x1−2b/a (2.26)

Because b � a, Eq. (2.26) leads to a conductivity which is a negative power of the
system length and which vanishes in the limit of an infinite chain [6, 16, 17]. In
condensed matter applications, where individual resistance values are typically ex-
ponential functions of random variables, the only easy way to generate a power-law
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behavior of the conductivity with system size is to invoke extreme value statistics.
The only systems in which mean-value statistics appear to be relevant, are one-
dimensional systems, because of the fact that pc = 1. Thus one-dimensional systems
make a very poor starting point for understanding percolation behavior generally. In
the next chapter we will also see (for different reasons) that two-dimensional sys-
tems make very poor models of 3d porous media.

2.6.2 Critical Path Analysis in 2D

Now we apply critical path analysis to an idealized conductance distribution on a
two-dimensional lattice. An attractive aspect of 2D systems is the direct relationship
there between critical conductance and system conductivity. Consider the elemen-
tary relationship between the resistance R and the resistivity ρ, for a homogeneous
system of length l and cross-sectional area A : R = ρl/A. In two dimensions the
analogous relationship is R = ρl/z, where z is the system dimension perpendic-
ular to flow. The particular case of two dimensions, where the sample-dependent
property R is equal to the ratio of two lengths times the material property, ρ, is
interpreted [40] for the case of disordered systems to imply the equivalence of ρ

and R, and thus between the conductance, g, and the conductivity, σ , as well. This
makes the system conductivity equal to the critical conductance.

For the bond percolation problem we need the probability density function (pdf),
denoted W(g), for finding a conductance between two arbitrary nearest neighbor
sites with value between g and g + dg. Normalization of this pdf requires,

∫ ∞

0
W(g)dg = 1 (2.27)

Consider the case that W(g) is a log uniform distribution of (electrical or hydraulic)
resistance values with width 10 orders of magnitude, e.g., from 100 to 1010 in arbi-
trary units. Place each conductance at random between two arbitrary nearest neigh-
bor sites on a square lattice. Each site has four nearest neighbors, z = 4, and for the
square lattice we know that pc = 0.5. The conductivity of this arrangement is the
median conductance value, g = 105 because it is known that emplacement of a frac-
tion 0.5 of the bonds of this lattice guarantees that the system is at the percolation
threshold. The median conductance on this lattice is then the smallest conductance
value that cannot be avoided by the current, a value which is more generally known
as the critical conductance, gc. That is, the value of gc is found from

∫ ∞

gc

W(g)dg = pc = 0.5 (2.28)

For an infinite square lattice, placement of 1/2 the conductances into lattice posi-
tions at random guarantees existence of a cluster of interconnected conductances
which just reaches infinite size; choosing that half of the conductance distribution
with the largest conductances yields the path of least resistance. If, in a correspond-
ing physical system all bonds have not only the same length, but also the same
cross-sectional area, the median conductance value would correspond rigorously to
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Fig. 2.2 For a log-uniform distribution of conductances the critical (percolating) rate-limiting
conductance, gc, as a function of the critical percolation probability, pc. Note the rapid diminution
of pc and increase of gc with increasing dimensionality. Further, if the geometric mean of the
distribution is held constant, but the width is increased, all systems to the left of the square lattice
will have an increase in K , while all those to the right will experience a decrease

the median conductivity in a distribution of conductivities. Such a picture applies
also to media in which the currents are represented numerically in terms of finite
difference equations, as long as the medium is divided up into sub-regions of iden-
tical squares. Since the effective conductivity of the medium is known in porous
media communities as the upscaled conductivity, then under fairly common condi-
tions we can identify the median of a conductivity distribution with the upscaled
conductivity in two-dimensions. If the logarithm of K is symmetrically distributed,
then the median of the conductivity is also the geometric mean.

These results do not apply for all two-dimensional systems. If the same conduc-
tances are placed on a triangular lattice, where each point has six nearest neighbors
(Z = 6), the dominant conductance value from the distribution is 106.55, because pc
is 0.345 and the current avoids the slowest 2/3 of the connections. If the same con-
ductances are placed on a honeycomb lattice, with Z = 3, the dominant conductance
is gc = 103.45, because pc = 0.655 and the current avoids only the slowest 1/3 of
the connections. Thus in our example, the values of the rate limiting conductances
and associated conductivities extend over more than three orders of magnitude in the
simplest two dimensional lattices (2D)! In Fig. 2.2 we represent these results picto-
rially, indicating also the range of likely values for gc in 3d lattices (pc ≤ 0.2488) as
well as on a 1D chain (where pc = 1). In 3d the relationship between gc and system
conductivity is more complex, and only in 2D systems can gc in Fig. 2.2 also be
interpreted as the conductivity.

2.6.3 Critical Path Analysis in 3D

In three dimensions we need to be able to write expressions for the conductivity
as well. If only enough resistors are placed on the lattice to guarantee the exis-
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tence of an infinite cluster (p = pc), then there will be only a single connected path
in, say, the x direction over a distance χ in both the y and z directions. But χ di-
verges right at the percolation threshold. While this path has the largest rate-limiting
conductance value possible for a given network topology and conductance distribu-
tion, construction of such a critical path does not optimize the conductivity since
the conductivity due to a single conducting path in an infinite cross-sectional area
(or perpendicular distance in two dimensions) is zero. However, emplacement of
a few smaller conductances into their positions in the network reduces χ rapidly
while scarcely diminishing the rate-limiting conductance, allowing the possibility
of a general optimization procedure. Such an optimization procedure for a three-
dimensional lattice is given below. The optimization procedure results in the deter-
mination of an optimal value of the conductance, gopt, which is useful as long as gopt

is close enough to gc so that the topology of the conducting paths is described by
percolation theory. Nevertheless, the tendency for pc to be much smaller in 3d than
in 2D tends to make the conductivity of 3d systems much higher than in 2D, and we
discuss first general tendencies for the conductivity in terms of the dimension of the
medium.

2.6.4 Dimensional Dependence and Similarity to Matheron
Conjecture

In Fig. 2.2 the dimensional dependence of gc for the proposed log-uniform distri-
bution of conductance values is clear and strong. In two-dimensional square lattices
the critical conductance, 105, yields the conductivity and is the geometric mean of
the distribution [(100)(1010)]1/2. For one dimensional systems gc is the smallest g

in the system, while in 3d systems, it is near the large end of the distribution. This
dimensional dependence is reminiscent of that in a classical conjecture of Matheron
[26]. The relevance of the geometric mean of a conductivity distribution to the 2D
upscaled conductivity is not restricted to a log-uniform distribution, but is repeated
for log-normal distributions and power law distributions as well, making it possible
to compare the result from critical path analysis to a completely different formu-
lation for upscaling K in heterogeneous media. Assume that the logarithm of the
hydraulic conductivity is normally distributed,

W(K) ∝ exp

{

−
[
(log(K) − log(K0))

2

2 Var(log(K))

]}

(2.29)

where Var[log(K)] is the variance of the distribution of log[K]. Then the lowest
order approximation to the hydraulic (or electrical) conductivity is [9]

K = Kgm exp

[(
1

2
− 1

d

)

Var
(
log(K)

)
]

= K0 exp

[(
1

2
− 1

d

)

Var
(
log(K)

)
]

(2.30)
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where Kgm, the geometric mean of K , is here equal to K0, the most likely value
of K . In fact, De Wit [9] explains that Eq. (2.30) is essentially a perturbation ex-
pansion in the (small parameter) Var(log(K)). Equation (2.30) also implies that
the upscaled conductivity in 2D is equal to the geometric mean or to the median
value. Further, the hydraulic conductivity increases with increasing variance in 3d
and diminishes with increasing variance in 1D, just as in Fig. 2.2. Since all methods
generate the hydraulic conductivity in 1-dimensional systems using the inverse of
the sum of the resistance values, the two results coincide in 1D as well as in 2D, at
least under some circumstances. But in 3d there are some fundamental differences.

In 3d, Eq. (2.30) suggests that the conductivity is independent of the proper-
ties of the connectivity of the medium as long as log(K) is a normally distributed
random field. It is known, however, that the connectivity of such fields plays an
important role in the upscaling [3, 23, 34, 41]. As can be seen from critical path
analysis, the tendency for K to increase with diminishing pc is not restricted to
the effects of increasing dimensionality, but includes effects of larger coordination
number as well. Thus increasing the local connectivity reduces pc and increases K .
Further, Eq. (2.30) implies that the conductivity can be represented in terms of the
mean value and some parameter describing the variation about the mean. However,
it should be apparent from critical path arguments that the important conductance
may be far in the tail of the distribution. As mentioned, Eq. (2.30) is not complete:
it is believed that Eq. (2.30) represents only the first term in a series [9] of terms
proportional to powers of the variance of log(K). Thus the validity of Eq. (2.30)
is subject to an important condition on the magnitude of Var(log(K)), which must
be small. Similarly, even using all the terms in the series is insufficient if the series
does not converge, which will be the case for large Var(log(K)).

2.6.5 Optimization of the Percolation Network: Contrast Between
2D and 3D

The idea of critical path analysis is actually not best expressed as an upscaling of the
conductivity. In particular, in critical path analysis, one seeks an optimization of an
expression for the conductivity, which is based on selection of paths with very small
values of the maximum resistance and the separation of those paths. Thus we find the
dominant conducting paths, the current (or flow) on those paths, and how many such
paths per unit area intersect a plane perpendicular to the flow. We cannot restrict our
attention precisely to the paths with the smallest possible values of the maximum
resistance, since these paths would be precisely at the percolation threshold and
then have infinite separation (leading to a zero conductivity). Incorporating some
larger resistances reduces the conductances of these paths, but increases their areal
density rapidly from zero. The typical separation of these paths is given in terms of
the correlation length, χ . The areal density of the relevant paths is thus χ−2. We
will then invert an elementary relationship for the resistance of a homogeneous wire
R = ρl/A, with ρ ≡ σ−1 the resistivity, l the length and A the cross-sectional area,
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to obtain the conductivity from R, l and A, i.e., σ = l/RA.A will thus be the square
of the correlation length, and l will be the typical separation of maximal resistances
on the path. In that expression for the conductivity, however, all the functions must
be written in terms of the maximally valued resistance (or minimum conductance)
in order to perform an optimization.

The correlation length is defined in terms of (p−pc); thus we must have a general
expression for (p−pc), which is written in terms of the resistance distribution itself,
in order to apply the optimization procedure.

Define,

F(R) ≡
∫ R

0
W

(
R′)dR′ = p (2.31)

Then,

F(Rc) =
∫ Rc

0
W

(
R′)dR′ = pc (2.32)

Equations (2.31) and (2.32) can be solved in parallel for p − pc. Define a conduc-
tance g ≡ R−1 and l to be the typical separation of the rate limiting resistances, R.
It is then possible to write a relatively simple expression for the conductivity of a
three dimensional network, on which a fraction, p, of bonds with the smallest R

values possible, is placed at random,

σ = l[F(g−1) − F(g−1
c )]2ν

χ2
0

g (2.33)

In Eq. (2.33) the factor [F(g−1) − F(g−1
c )]2ν arises from the square of the cor-

relation length in the denominator. Equation (2.33) is, for heterogeneous systems,
again equivalent to the result in elementary physics texts for the resistance of a ho-
mogeneous wire R = ρl/A, with ρ ≡ σ−1 the resistivity, l the length and A the
cross-sectional area. In Eq. (2.33) χ2

0 [F(g−1) − F(g−1
c )]−2ν is the square of the

correlation length as a function of the smallest conductance included, g. l is ac-
tually the separation of rate-limiting resistances on the dominant, current-carrying
path and, as such, would seem to involve only the statistics of the resistance val-
ues. If the resistance distribution is discretized in steps of the fundamental constant
e = 2.718, then one could write for l,

l ≈ χ0

{ ∫ R

0 W(R)dR
∫ e1/2R

−R/e1/2 W(R)dR

}− 1
3

(2.34)

in three dimensions. Equation (2.34) actually has a very simple basis. Note that the
ratio on the right-hand side is just the inverse of the fraction, f , of emplaced resis-
tances which is in the largest discretization class, so that l3f ≈ 1. In this formula-
tion, the distribution of resistances on the percolating cluster is the same as in the
medium generally, so that the volume concentration of the largest resistances is easy
to obtain from the appropriate bulk distribution, W(R). Note that l in Eq. (2.33) is
thus only a very slowly varying function of p, and not a function of p−pc at all. For
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this reason optimization of Eq. (2.33) is not complicated by consideration of l. Re-
sult Eq. (2.33), however, is not generally agreed on. Several authors identify l with
the correlation length χ = χ0[F(g−1) − F(g−1

c )]−ν , by arguing that the separation
of rate-limiting resistances is topologically constrained, rather than a function of the
frequency of occurrence of such resistances. The physical basis for this argument is
that, in the vicinity of pc at least, most of the largest resistances are shorted by al-
ternate paths with smaller dominant resistance values, but that, for self-consistency
l cannot be larger than χ , otherwise the value of p would have to be changed. This
important problem is still not completely settled, with several different perspectives
taken in the literature, including an important contribution from a soil physicist [37].

If in Eqs. (2.31) and (2.32) R is an exponential function of a random vari-
able, such as a site separation (R ∝ exp(2r/a) with a a constant length), then
F(R) − F(Rc) ∝ ln(R/Rc) = ln(gc/g), but if R is a power of, e.g., a tube radius
(for hydraulic conduction), then F(R) − F(Rc) ∝ (R − Rc) or g − gc (see the as-
signed problems). Using Eq. (2.34) for l and optimizing Eq. (2.33) leads, in the first
case, to [12]

dσ

dg
= d

dg

[
l[F(g−1) − F(g−1

c )]2ν

χ2
0

g

]

=
[

ln

(
gc

g

)]2ν

− 2ν

[

ln

(
gc

g

)]2ν−1

= 0

(2.35)

Solution of Eq. (2.35) yields ln(gc/g) = 2ν, or g = gc exp(−2ν). Thus the control-
ling conductance, g, is closely related to the critical value, gc, and this value of g

can also be substituted into χ = χ0[F(g−1)−F(g−1
c )]−ν ), to generate an expression

for σ in Eq. (2.33). Note that choice above of l ∝ χ would yield g = gc exp(−ν),
because the exponent 2ν would be replaced by ν. In two dimensions, the factor
χ2 in the denominator is replaced by χ . If l is taken to be proportional to χ , the
two-dimensional case becomes special because l/χ has no dependence on the per-
colation variables, with the conductivity a universal numerical factor (of order unity)
times the critical value of the conductance, gc. This result does appear to be verified
[40], and our own simulations agree [18]. Specific results from critical path analysis
will be discussed in Chap. 5 and elsewhere.

Note, however, that in many cases it may be possible to apply critical path anal-
ysis without using the above optimization if it is desired only to find the ratio of
the critical resistance value at two different values of a changing external parameter
such as the moisture content, and under the assumption that far from the percolation
threshold the topological aspects affecting the optimization will change only slowly
with such external parameters. Predominantly such cases will also be considered in
the chapters on applications.

In hydrogeology one of the most important problems is to be able to predict the
effective (hydraulic) conductivity, Keff, of a medium from information regarding
the variability of K within the medium. This problem is known as “upscaling the
hydraulic conductivity.” It is often stated that Keff is bounded by its harmonic and
arithmetic mean values. The harmonic mean of a collection of resistance values is
the value obtained by configuring them all in series. The arithmetic mean of a col-
lection of resistors is the equivalent resistance value when they are all configured in
parallel. Geologists often assert that physicists do not comprehend the complexity
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of geologic material (which is true), but such an upscaling scheme was obviously
developed from the geologic perspective of a subsurface stratified in horizontal ge-
ologic units, where horizontal conduction is governed by the arithmetic mean and
vertical conduction by the harmonic mean.

Upscaling K in three dimensions as though all resistances were configured in
parallel (series) is consistent with assuming that pc = 0 (pc = 1). The latter is valid
for one-dimensional systems. Thus regarding the bounds of K as being its harmonic
and its arithmetic means corresponds to assuming that the critical bond (or volume)
fraction for percolation is between 1 and 0, valid for one and infinite dimensional
systems, respectively. This means that typical guidelines for upscaling state only
that the critical percolation probability is a probability, or that conduction takes
place in a dimension between one and infinity. In this context we can see what
potential improvement in theory exists when a perspective based on percolation
theory is adopted. The value of pc for a given system defines what fraction of the
(smallest) individual resistances, which must be considered as connected in series,
with the remaining 1 − pc fraction of larger resistances connected in parallel. Any
information on connectivity should help to estimate the appropriate value of pc for
a system, guiding the upscaling.

2.7 Summary

In predicting transport properties of porous media it is necessary to be able to dis-
tinguish the roles of the medium and the fluids within the medium. Likewise, it is
essential to be able to calculate inputs from both geometry (e.g., pore size distri-
butions) and topology (specifically fluid connectivity within the pore space). In the
framework of this book we can make the following generalizations:

(1) Values of the effective hydraulic conductivity K are strongly affected by the
local resistance distribution (obtained at the pore-scale from the pore-size dis-
tribution), both at complete saturation, and as a function of saturation.

(2) All other conduction parameters are dominated by fluid connectivity issues,
leading to the relevance of universal scaling of percolation for saturation de-
pendences.

(3) When conductance distributions are important, i.e., for K , its effective value is
best calculated in critical path analysis. Beyond its aesthetic appeal and greater
accuracy of prediction, critical path analysis has the additional advantage of
providing a physical interpretation for the “irreducible” moisture content, being
mathematically consistent with scaling approaches, and thus allowing param-
eters to have consistent values across different properties, whether pore-size
dominated, or fluid-connectivity dominated.

Problems

2.1 Provide the details of the derivation of Eq. (2.18) and Eq. (2.20) for solute
diffusion.
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2.2 Verify that p − pc ∝ ln(gc/g) if R ∝ exp(2r/a), whereas p − pc ∝ (g − gc) if
R ∝ r−4. Are there any conditions or restrictions on W(R) for the validity of
this derivation? Can you name any systems for which these resistance values
are appropriate?

2.3 Repeat the optimization procedure for the conductivity if R ∝ r4 and p − pc ∝
gc − g. Note that the optimization procedure described in the text (for the ex-
ponential case) is unchanged if the conductivity is represented in terms of R

rather than in terms of g. However, the optimization procedure in terms of R

fails for the case of the power-law dependence of R. Show this explicitly. What
does this failure imply?

2.4 Verify that if W(R) ∝ R−α between Rmin and Rmax, such that −2 < α < −1,
the effective resistance of a 1D chain for this choice of W(R) is proportional
to Rmax.

References

1. Ambegaokar, V.N., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems.
Phys. Rev. B 4, 2612–2621 (1971)

2. ben-Avraham, D., Havlin, S.: Diffusion and Reactions in Fractals and Disordered Systems.
Cambridge University Press, New York (2000)

3. Batchelor, G.K.: Transport properties of two-phase materials with stochastic structure. Annu.
Rev. Fluid Mech. 6, 227–255 (1974). doi:10.1146/annurev.fl.06.010174.001303

4. Berkowitz, B., Balberg, I.: Percolation approach to the problem of hydraulic conductivity in
porous media. Transp. Porous Media 9, 275–286 (1992)

5. Berkowitz, B., Balberg, I.: Percolation theory and its application to groundwater hydrology.
Water Resour. Res. 29, 775–794 (1993)

6. Bernasconi, J., Schneider, W.R.: Classical hopping conduction in random one-dimensional
systems—non-universal limit-theorems and quasi-localization effects. Phys. Rev. Lett. 47,
1643–1647 (1981)

7. Clerc, J.P., Podolskiy, V.A., Sarychev, A.K.: Precise determination of the conductivity expo-
nent of 3D percolation using exact numerical renormalization. Eur. Phys. J. B 15, 507–516
(2000)

8. Derrida, B., Vannimenus, J.: A transfer matrix approach to random resistor networks. J. Phys.
A, Math. Gen. 13, L557–L564 (1982)

9. De Wit, A.: Correlation structure dependence of the effective permeability of heterogeneous
porous media. Phys. Fluids 7(11), 2553–2662 (1995)

10. Feng, S., Halperin, B.I., Sen, P.N.: Transport properties of continuum systems near the perco-
lation threshold. Phys. Rev. B 35, 197 (1987)

11. Fisher, M.E.: The theory of critical point singularities. In: Green, M.S. (ed.) Critical Phenom-
ena, Proc. 1970 Enrico Fermi Internat. Sch. Phys., Course No. 51, Varenna, Italy, pp. 1–99.
Academic Press, New York (1971)

12. Friedman, L., Pollak, M.: The Hall effect in the variable-range hopping system. Philos. Mag.
B 44, 487–507 (1981)

13. Gingold, D.B., Lobb, C.J.: Percolative conduction in three dimensions. Phys. Rev. B 42(13),
8220–8224 (1990)

14. Grassberger, P.: Conductivity exponent and backbone dimension in 2-d percolation. Physica
A 262, 251–263 (1999)

15. Herrmann, H.J., Stanley, H.E.: The fractal dimension of the minimum path in two-dimensional
and three-dimensional percolation. J. Phys. A 21, L829–L833 (1988)

http://dx.doi.org/10.1146/annurev.fl.06.010174.001303


References 57

16. Hunt, A.: One-dimensional hopping conductivity calculations. Philos. Mag. B 64, 327–334
(1991)

17. Hunt, A.: A general treatment of 1-dimensional hopping conduction. Solid State Commun.
86, 765–768 (1993)

18. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conduc-
tances. Adv. Water Resour. 24(3,4), 279–307 (2001)

19. Jerauld, G.R., Hatfield, J.C., Scriven, L.E., Davis, H.T.: Percolation and conduction on Voronoi
and triangular networks: a case study in topological disorder. J. Phys. C 17, 1519–1529 (1984)

20. Keffer, D., McCormick, A.V., Davis, H.T.: Diffusion and percolation on zeolite sorption lat-
tices. J. Phys. Chem. US 100, 967–973 (1996)

21. Kirkpatrick, S.: Phys. Rev. Lett. 27, 1722 (1971)
22. Kirkpatrick, S.: Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973)
23. Knudby, C., Carrera, J., Bumgardner, J.D., Fogg, G.E.: Binary upscaling—the role of connec-

tivity and a new formula. Adv. Water Resour. 29, 590–604 (2006)
24. Lee, Y., Andrade, J.S., Buldyrev, S.V., Dokholoyan, N.V., Havlin, S., King, P.R., Paul, G.,

Stanley, H.E.: Traveling time and traveling length in critical percolation clusters. Phys. Rev. E
60(3), 3425–3428 (1999)

25. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1983), 468 pp.
26. Matheron, G.: Éléments Pour Une Théorie des Milieux Poreux. Masson et Cie, Paris (1967)
27. Moldrup, P., Oleson, T., Komatsu, T., Schjoning, P., Rolston, D.E.: Tortuosity, diffusivity, and

permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65, 613–623 (2001)
28. Neuweiler, I., Vogel, H.-J.: Upscaling for unsaturated flow for non-Gaussian heterogeneous

porous media. Water Resour. Res. 43, W03443 (2007)
29. Normand, J.-M., Herrmann, H.J.: Precise numerical determination of the superconducting ex-

ponent of percolation in three dimensions. Int. J. Mod. Phys. C 1, 207–214 (1990)
30. Pike, R., Stanley, H.E.: Order propagation near the percolation threshold. J. Phys. A 14, L169–

L177 (1981)
31. Pollak, M.: A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 11, 1–24

(1972). doi:10.1016/0022-3093(72)90304-3
32. Sahimi, M.: Flow phenomena in rocks—from continuum models to fractals, percolation, cel-

lular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)
33. Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: Real-space renormalization and

effective-medium approximation to the percolation conduction problem. Phys. Rev. B 28,
307–311 (1983)

34. Sanchez-Villa, X., Carrera, J., Girardi, J.P.: Scale effects in transmissivity. J. Hydrol. 183,
1–22 (1996)

35. Sen, P.N., Roberts, J.N., Halperin, B.I.: Non-universal critical exponents for transport in per-
colating systems with a distribution of bond strengths. Phys. Rev. B 32, 3306–3308 (1985)

36. Sheppard, A.P., Knackstedt, M.A., Pinczewski, W.V., Sahimi, M.: Invasion percolation: new
algorithms and universality classes. J. Phys. A, Math. Gen. 32, L521–L529 (1999)

37. Skaggs, T.H.: Effects of finite system size and finite heterogeneity on the conductivity of
broadly distributed resistor networks. Physica B 338, 266–269 (2003)

38. Skal, A.S., Shklovskii, B.I.: Topology of an infinite cluster in the theory of percolation and its
relationship to the theory of hopping conduction. Sov. Phys. Semicond. 8, 1029–1032 (1975)

39. Stauffer, D.: Scaling theory of percolation clusters. Phys. Rep. 54, 1–74 (1979)
40. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis,

London (1994)
41. Torquato, S.: Random Heterogeneous Materials. Springer, Berlin (2002)

http://dx.doi.org/10.1016/0022-3093(72)90304-3


Chapter 3
Porous Media Primer for Physicists

3.1 How Does Percolation Theory Relate to Porous Media?

The two disciplines which this book combines—percolation theory and porous
media—developed independently, and have only slowly (and seemingly reluctantly)
become aware of each other. This despite Broadbent and Hammersley’s [14] term
“percolation”, chosen to evoke the image of water flowing through coffee grounds
in a coffee percolator, and their use of porous media as an example application! The
previous chapters presented some fundamentals of percolation theory, but did not
explicitly relate the theory to porous media. This chapter presents some fundamen-
tals of porous media, without providing the detailed connections with percolation
that appear later in this book. The fundamentals have been largely developed in the
context of studying pore-scale processes, while extensions to sample scales were
typically pursued without applying concepts of percolation theory. To help bridge
this apparent disconnect, we start with some conceptual and historical context. It
will be seen that the logic of the present development has occasionally been antici-
pated.

Percolation theory and the study of porous media share two core concepts: net-
works (what mathematicians call graphs) and emergence. The pores in natural
porous materials form a network, and the macro-scale properties of the medium
result (emerge) from the local properties and interactions of the component pores.
Irwin Fatt [42–44] developed the first network model of porous media, and explicitly
calculated how a medium’s macroscopic properties emerge from the network of in-
dividual pores, although “emergence” was not then an accepted term in the quantita-
tive sciences [30]. Fatt showed how individual events within the pore network com-
bine to produce hysteresis, non-linear relationships between pressure and saturation,
and other aspects of porous materials previously found confusing or intractable.
Thus the geometrical and topological characteristics of the network itself are rele-
vant to measured properties. Parameters describing pore sizes and pore-connectivity
show up most straightforwardly in phenomenologies for the water retention charac-
teristics, which derive from the apportionment of fluids within the medium. This

A. Hunt et al., Percolation Theory for Flow in Porous Media,
Lecture Notes in Physics 880, DOI 10.1007/978-3-319-03771-4_3,
© Springer International Publishing Switzerland 2014

59

http://dx.doi.org/10.1007/978-3-319-03771-4_3


60 3 Porous Media Primer for Physicists

subject, including a wide range of influences that confound interpretation is treated
in Sect. 3.5.

Direct connections between percolation theory and porous media were not made
until 1977, when two groups made the link independently. Larson, Scriven and
Davis [86] noted that the size distribution of residual oil blobs in reservoir rock
was predicted by percolation theory, and the topology of porous media might be as
important as the geometry. Chatzis and Dullien [21] pointed out that the sites and
bonds in percolation theory resembled pore bodies and pore throats (see Sect. 3.3)
in porous media. Mohanty et al. [100] later formalized this resemblance, showing
how in principle one could map a porous medium onto a network. Wilkinson and
Willemsen [146] soon developed invasion percolation, a new form of percolation
explicitly based on immiscible displacement of fluids in a porous medium, and the
two disciplines have drawn inspiration from each other since then, although the con-
nection has never been mainstream in either.

Of the many forms of percolation introduced in Chaps. 1 and 2, which applies to
porous media? Of the various techniques for predicting transport properties, which
will bear fruit? The answers to the first question will be clearer after we have ex-
plored some basic concepts of porous media, both fundamental properties and some
processes occurring in them. The answer to the second question is based on analysis
of each individual property investigated and is explored in the subsequent chapters.

3.2 Kinds of Porous Media

A porous medium is a composite of solid and void, with the void typically being
occupied by one or more fluids. “Most materials are to some extent porous: indeed,
it is quite difficult to find or prepare a truly non-porous solid” [114]. Suspensions and
slurries are also composites containing solid and fluid, but they differ from porous
media in that their solid component is discontinuous, unable to transmit stress. Many
materials are useful precisely because they are porous: soil absorbs and stores water,
cloth allows air and water vapor to pass through it, and leavened bread sops up gravy.
Our focus in this book is on natural granular porous media such as gravel, sand, and
soil. Other familiar granular materials include bulk grains like rice and corn, and
powders such as flour and baking powder.

Many familiar porous media are not granular, but many concepts examined in
this book apply to them as well. Examples include biological tissue (lungs, wood,
potatoes), solidified foams (pumice, bread, foam insulation), fibrous media (cloth-
ing, paper, fiberglass insulation), crystalline media (granite, some kinds of metal) in
which the porosity is mainly at grain boundaries, fractured media (again granite, but
focusing on fractures much larger than the individual mineral grains), and sintered
materials (ceramics, fritted glass or metal filters). As these examples suggest, porous
materials span a wide range of porosity, and they may be isotropic or anisotropic,
amorphous or structured, have more than one characteristic length scale, and medi-
ate multiple interesting and interacting processes.
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Given the striking complexity and variability of natural porous media, these notes
will be limited to soils and rocks, the porous media most familiar to the authors. Soil
is so common that people often forget its complexity: it includes both mineral and
organic materials, often includes both solids and pores spanning more than four or-
ders of magnitude in length, routinely shifts between water-saturated and air-dry,
and has a large and variable surface area that mediates many physical, chemical,
and biological reactions. Most processes that occur in some arbitrary porous mate-
rial also occur naturally in soils, so our use of soils as a common example is not
restrictive.

The study of porous materials is the province of many different disciplines. These
disciplines, and especially the applied earth sciences (soil science, hydrology, civil
and petroleum engineering) have historically focused on applications rather than
understanding, and this pragmatic approach has led to some cutting of corners. Fur-
thermore, the different disciplines have different goals, so they have developed their
own peculiar vocabulary, insights, and biases. For example, petroleum engineers
generally work with consolidated rock, so the concept of a particle size distribution
is not as central to their thinking as it is to a soil scientist. Meanwhile, soil scientists
working with just two fluids—air and water—often assume that they can get away
with assuming that air is infinitely compressible (and has density and viscosity of
zero), while petroleum engineers working with multiple flowing gases and liquids
must consider all fluid phases in concert. Similarly, engineers may treat geological
porous media as disordered systems, while soil scientists focus on soil structure at
various scales and object to soil being called disordered. From the perspective of
physics, soils are complicated, disordered, composite media.

The purpose of this chapter is to introduce physicists to basic concepts of porous
media, especially those found in the applied earth sciences. As such it will show
both the successes and the internal inconsistencies of this community. The applied
earth science community has come to value flexible formulations of flow and trans-
port above predictive ones: somewhere a combination of parameters must exist that
makes “correct” predictions. And in fact, with flexible formulations there may be
a large number of such combinations, so a common concern of the community re-
gards the “uniqueness” of parameter determinations. Another advantage of flexible
formulations is that experimental error, which is often appreciable, can be readily
accommodated. Usually the resulting relationships are recognized in the soil sci-
ence and hydrology community as being phenomenological only. But the point of a
physics-based treatment must be to derive relationships that are both predictive and
physically sound, even in the face of complexity.

3.3 Properties of Porous Media Independent of Fluid

We first consider those properties of a porous medium that do not involve any fluid.
Historically most properties have been considered to be geometrical: sizes, volumes,
surfaces, and so on. But many important properties have a topological aspect as well,
and we mention these as appropriate.
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Fig. 3.1 Porosity classified
by topology. White: infinite
cluster, with the backbone
solid and the dangling ends
dotted. Light grey:
edge-connected; dark grey:
isolated

We caution in passing that even geological porous materials can be dynamic and
fragile. For example, soils compress under heavy loads, and clayey soils may swell
with increasing moisture content, and shrink upon drying. Ephemeral biological
activity can create large macropores that locally dominate the permeability. Collect-
ing and transporting a sample disturbs it, and disturbed samples differ from the in
situ material (explaining the community’s preference for repeated in situ measure-
ments, even when the actual techniques are less precise). While of great practical
importance, the changeability of these materials is not fundamental to the present
discussion, and accounting for it would force the development of more complicated,
non-linear techniques. Our implication that these are rigid materials with fixed prop-
erties does not make them so.

3.3.1 Porosity

The most fundamental geometrical property of a porous medium is the porosity, the
volume fraction that is void rather than solid. Generally denoted φ, it is a unitless
fraction less than 1. Porosity must describe a finite volume, because a dimensionless
point is either completely solid or void. Rock porosity values range from less than
a percent in many crystalline rocks such as granite, through 5–15 % in sandstones,
to well over 60 % in pumice. Because soils are particulate rather than rigid, the
requirement of mechanical stability restricts soil porosity values to a smaller range.
Most mineral soils (as opposed to, e.g., peat) have porosities between about 30 %
and 60 %, with 40 % to 50 % being a common value near the ground surface.

Porosity is sometimes sub-classified by its size (macropores, mesopores, microp-
ores), its genesis (primary and secondary porosity) or its function (effective porosity,
closed porosity). While these have their uses, a more fundamental classification is
topological (Fig. 3.1). Pores on the infinite cluster may be on the backbone (fluid
would flow through them) or be dangling ends, only singly connected to the infinite
cluster. Pores that are not on the infinite cluster may be connected to the “outside”
(because porous media, being real rather than mathematical objects, are not infinite),
or on finite clusters that connect neither to the outside nor to the infinite cluster. This
classification connects explicitly with percolation theory. But note that the topo-
logical classification of a given pore can depend on the specific boundaries of the
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system: if the medium in Fig. 3.1 were cut at A–A′, one isolated pore would be “pro-
moted” to edge-connected, one dangling end would be promoted to the backbone,
and one portion of the backbone would be demoted to edge-connected. These con-
cepts are crucial to studies of, e.g., diffusion into poorly connected media [40, 41],
such as the pore space in crystalline rocks.

Porosity can be surprisingly difficult to measure accurately. If the pore space
is well connected, then porosity may be measured by measuring the mass of a
sample completely occupied in turn by two fluids of known but different densi-
ties. For example, the sample may be water-saturated and weighed, then oven-dried
and weighed, with the pore volume given by the change in mass times the density
difference. But this requires that all pores be completely filled by each fluid in turn,
and in fact it takes good experimental technique to guarantee water contents greater
than about 0.9φ. For example, estimates of saturated moisture contents taken on the
same soils by different Department of Energy labs vary by as much as 20 %. Faced
with such issues, a physicist must evaluate whether his/her notions of experimental
tolerance are realistic.

An alternative method, less susceptible to errors due to wettability and fluid en-
trapment, is to use gas pycnometry (e.g., [128]): seal the sample into a chamber of
known volume, pressurize gas in a different chamber of known volume, measure
the gas pressures, then connect the chambers and measure the resulting pressure.
From the gas pressures, and the volumes of the chambers, the volume of the solid
may be calculated by Boyle’s law; if the bulk volume of the sample is also known,
one obtains the porosity. This requires that the porespace be connected, which is
predominantly the case in soil though less likely in some rocks, e.g. shale. When
isolated pores form a non-negligible fraction of the porosity, accurate measurement
requires other methods. For example, one may measure the two-dimensional void
fraction of a polished section cut through the medium, and equate the result with the
three-dimensional porosity via Delesse’s theorem [34], although for fractal media
(at least), systematic errors result if 2D images are used to estimate the porosity. Al-
ternatively, one may use gamma-ray attenuation [6], or a three-dimensional imaging
method such as X-ray CT [91].

3.3.2 Bulk & Particle Density, Particle Size Distribution

The density of the solid phase is denoted ρp (M L−3, the subscript p means parti-
cle, revealing the notation’s roots in granular media). The solid phase of a porous
medium is often considered constant with respect to material composition, chem-
istry, and therefore particle density. In contrast, the solid as an ensemble—the bulk
material—may be compressible, such that the porosity changes. Changes in poros-
ity must thereby change the bulk density (mass of solids divided by volume of solid
plus void), denoted ρb:

ρb = ρp(1 − φ) (3.1)
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In practice porosity is often calculated from this relationship: the bulk density and
particle density are relatively easy to measure, and in some materials (for example,
soils) the mean particle density is known a priori to be within a few percent of the
density of quartz, 2.65 Mg m−3. The bulk density may be obtained from e.g. the
mass of a core of known dimensions, and the particle density can be measured by
pulverizing a subsample of that core and using water or gas pycnometry. Pulverizing
the sample prior to measuring particle density may connect previously isolated pores
above the scale of pulverization.

When the material is granular, it can be useful to know the size distribution of
the grains. Because the solid and void form dual networks, knowing the grain size
distribution (which is easier to measure) also allows estimation of the pore size
distribution. But natural materials have irregular shapes, so the “size” measured is
the radius or diameter of an equivalent sphere, with inevitable biases specific to the
method used. Particles in the size range 0.05–5.0 mm are usually separated by being
passed through a stack of successively finer sieves, but needle-like particles will
pass a given sieve only if oriented by sufficiently vigorous shaking; the mode and
duration of the shaking therefore affects how different shapes are sieved. Sieving is
not practical for particles smaller than about 0.05 mm.

For particles smaller than about 50 μm, surface chemistry and intermolecular
forces are relatively strong. These particles may clump together or onto the surface
of larger particles, such that they present as larger than they really are. This clump-
ing confounds the main methods used to measure small particles, Stokes settling
[48] and laser diffractometry [93], unless particles are first dispersed. The degree
of dispersion desired depends on the intended use of the data: for some purposes,
the aggregated particle size may be more relevant than the dispersed particle size.
A further complication is that particle density and shape may vary systematically
with size, because particles classified as clay (<2 μm diameter) are often clay min-
erals (confusingly, the word “clay” denotes both a size and a mineralogy!), having a
sheet-like shape and a lower density than is typical for larger size particles. Again,
this systematic change in shape and density requires corrections, which may or may
not actually be performed in practice. Finally, use of different methods for different
size ranges introduces a new problem: data obtained by two different methods are no
longer constrained. Frequently the total weight fraction does not equal 1, so that the
cumulative size distribution graph may not accumulate to 1; alternatively there may
be regions with apparent negative slope. Since both of these results are unphysical,
a protocol must be developed for accepting or rejecting data, or making consistent
adjustments to provide a reasonable synthesis.

Some media are composed of a narrow range of particles. For example, loess
soils are composed of wind-borne particles that were transported long distances,
resulting in soils dominated by a single characteristic particle size. Likewise, in-
dustrial processes often produce powders of high uniformity. But where the width
of the distribution is as important as the characteristic size (however defined), it is
useful to present both aspects of the distribution. In soil science, the particle size
is often presented in the form of a “texture class”, defined by a region in the “tex-
ture triangle”. This triangle is defined by breaking the total size range (from 2 μm
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to 2 mm) near the geometric mean, which defines 4 bins: <2 μm (clay), 2–50 μm
(silt), 50–2000 μm (sand), and >2 mm. (Gravel and coarser material in the >2 mm
bin are not defined as part of the soil, because moist soil is considered to be cohesive
and cohesive forces between such large particles are negligible. Therefore, only the
3 finer bins are used to construct the ternary diagram.) Plotting a specific soil’s bin
mass fractions into the ternary diagram places it into one of 12 predefined regions
(“textures”). Significant information is clearly lost in this process, but the 12 soil
textures have distinct and useful connotations for practitioners. This classification
scheme was developed primarily for its relevance to agricultural soils, which need
to simultaneously optimize water retention (small pore sizes) and flow (large pore
sizes). It has long been recognized that soils with a wide range of particle sizes,
incorporating sands, silts and clays, are ideally suited to agriculture.

3.3.3 What Is a Pore?

The emphasis in porous media on the spaces between the particles is complemen-
tary to the usual emphasis in e.g., condensed matter physics. The preceding sections
mention pores, and the term “porous medium” implies the presence of pores, but
we have not defined a pore. It is easy to distinguish between solid and void, so the
entire void portion of a given porous medium, its porespace, is defined by difference
from the solid. But determining where one pore ends and another begins is some-
what arbitrary. The porespace is continuous, and subdividing it into discrete parts
requires arbitrary decisions, like classifying colors or weather. So while we often
find it useful to speak of individual pores, those pores might not be uniquely and
unambiguously defined.

One might think that in a granular medium (at least) it would be straightforward
to define individual pores. The individual grains are roughly convex, so the pores
forming the dual network are concave; individual pores may be distinguished by
the presence of a minimum between them. In Fig. 3.2a a pore network is shown as
Voronoi polygons, defined by the perpendicular bisector of the line connecting the
centers of neighboring solid circles. But a pore defined by more than 3 circles (or by
more than 4 spheres in the 3 dimensional case) might instead be interpreted as two
or more pores, depending on the defining criteria; this is one of the arbitrary choices
identified by Mohanty [99]. The issue becomes more complex in 3 dimensions, or
when the solids are irregularly shaped.

Often, connections between pores (however defined) are seen to have a converg-
ing-diverging geometry. In these cases the large central part is called the pore body,
and the narrow connection is called the pore throat (or pore neck). We might (for
example) consider that fluid is stored in the pore body, while resistance to flow is
given by the pore throat. As Chatzis and Dullien [21] noted, the pore bodies are like
the sites of percolation theory, while the pore throats are like the bonds. Building
on this analogy, specific pore-scale events or processes are seen to correspond to
specific kinds of percolation.
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Fig. 3.2 Pores in a granular medium. a: An idealized 2D medium with solids shown in black, and
the void space divided into a pore network (after [100]); b: one possible pore network equivalent
of a with dark pore bodies and lighter pore throats, showing the converging-diverging pore geom-
etry; and c: a section of Fontainebleau sandstone with 22 % porosity with solids made transparent,
showing only the porespace (from [95]). In a, pores marked with a number may be interpreted
either as that number of distinct pores, or as a single pore, depending on the choice of rules

3.3.4 Pore Size Distribution

The concept of a pore size distribution features prominently throughout this book.
Here we briefly consider what it is; in Sect. 3.5.3 we consider various methods for
measuring it.

The basic concept seems easy: a pore-size distribution is a cumulative relation-
ship between fractional pore volume and finite ranges of pore size. The difficulty
lies in defining precisely what is a “pore size”, and precisely what pore volume is
associated with that size. Given the difficult issues of assigning a single size to an
irregularly-shaped particle (Sect. 3.3.2), and defining a single pore (Sect. 3.3.3), one
might anticipate (correctly!) that the pore size distribution is similarly fraught. For
example, is the relevant size of a pore the radius of the pore body, or the radius of
the pore throat? If the pore body, is the relevant size (for example) the radius of a
sphere having the same volume, or perhaps the maximum radius of curvature of a
meniscus moving across the pore (but from which pore throat to which other throat,
and with what contact angle)? Or, if it’s the pore throat, which of the several throats
connecting to a pore body (Figs. 3.2b and 3.3) is assigned the volume of the pore?
If the chosen throat has an irregular cross-section (as it inevitably will), is its “size”
the minimum size reached by a meniscus passing through the throat (and with what
contact angle), the square root of the cross-sectional area, or some other value? Of-
ten the analysis tacitly assumes that the pore throat is circular, slit-like, or having
some other regular geometry; other times the intent is nonetheless to reduce it to
some equivalent size of cylinder, slit, or sphere, although most natural media have
more than a single type of pore present [9].

We raise these questions to show that the concept of a pore size, a single length
used to characterize an irregular (and poorly defined) pore whose identity is ques-
tionable, is essentially a necessary fiction. If the pore size is obtained by analy-
sis of 3D data (for example, tomographic information being analyzed by 3DMA
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Fig. 3.3 Four views of one individual pore in Fontainebleau sandstone identified by the program
3DMA [88]. The patches of grey squares indicate connections to neighboring pores. What single
length characterizes this pore?

(Fig. 3.3); [88]), then these questions must be answered unambiguously, but the
decisions supporting the answer are still necessarily somewhat arbitrary. Imaging
methods [75, 91, 125, 141] involve thresholding or segmenting (e.g., [67]), skele-
tonizing via medial axis transformation or deformation retract, and using various
algorithms to identify and classify pore space components, with each step introduc-
ing some ambiguity. A key consideration being the relative scales of the voxels, and
the characteristic grains or pores: even at the 5 μm resolution available with syn-
chrotron X-ray imaging [105], pore connections below the image resolution will be
missed.

A non-imaging method, small angle neutron scattering (SANS; e.g., [96, 109]),
involves different but analogous assumptions in analysis. NMR can be used to track
diffusion, and thereby to infer the pore-size distribution [124], but complex and
broad distributions are not well handled. Other more common pore-size measure-
ment methods (Sect. 3.5.3), being process-based, assign a pore size to some fraction
of the total pore volume based on a combination of measurement protocols and in-
dependent assumptions: that is, they define the pore size distribution procedurally
rather than rigorously.

While much effort is focused on the pore size distribution, porosity and the pore
size distribution are clearly insufficient for characterizing a porous medium. Size
distribution is a geometric measure, lacking topological information. Topological
input may take the form of a mean coordination number: random packing of uni-
form spheres produces pores with average coordination in the range 4.7–5.5 [1],
depending on how dense the packing is and on precisely how a pore is defined,
while lower-porosity sandstones tend to have lower pore coordination [91]. Natural
porous media tend to have adjacent pores correlated in size [80], and larger pores
tend to have higher coordination [91]; both of these tendencies affect their fluid-
holding and transport properties. At a larger scale, soils tend to be “structured,”
by which is meant two things: first, some pores are larger than the largest grains,
and second, a network of large pores may percolate even though they constitute
only a small fraction of the total porosity, typically less than the critical fraction for
percolation for the smaller “non-structural” pores. The effects of soil structure on
hydraulic properties in biologically active soils are considered in Chap. 12. In the
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case of swelling clays, these larger “pores” are drying cracks, and such media are
not further considered here.

Because it is much easier to measure particles than pores, the pore size distri-
bution is often estimated from the particle size distribution. The simplest approach
is to assume a one-to-one correspondence between particles and pores: for every
particle with (effective) radius r , there is a corresponding pore with (body or throat)
radius ar , for some a < 1 [3, 56, 135]. Typical estimates of the numerical value
of a run about 0.3, though this value is notoriously variable in terms of the typical
particle size; finer soils tend to have a larger proportionality constant than coarser
ones due to having relatively greater cohesion. Obviously compaction of a given
soil, resulting in a smaller porosity, would reduce a. Further, the proportionality be-
tween particle and pore sizes may hold over only part of the range of particle sizes
measured, especially if the larger pores are “structural” in nature.

3.3.5 Surface Area and Surface Chemistry

Another basic property is the specific surface area, the surface area per unit mass
or volume. This may be of interest because the solid surface catalyzes or other-
wise mediates chemical reactions, or because a liquid sorbs to the surface, mod-
ifying its properties. For example, in soil the solid surface is often covered by a
thin film of water, the thickness of which varies according to the water’s energy
state. Surface area measurements generally involve monomolecular layer sorption
[79], which only measures the connected pores. But in any but the simplest mate-
rials, the calculated surface area is also a function of the size of the interrogating
molecule [79]. Pore accessibility can also be a function of size—larger molecules
being excluded from smaller pores—so multiple measurements of specific surface
area using molecules of various sizes will not necessarily give the correct surface
fractal dimension.

Many porous media of interest are occupied by more than one fluid. Which fluid
occupies which pore varies with (among other things) chemical interactions between
the pore surface and the fluid. For example, if the surface chemistry is polar, then
occupancy by polar liquids will be favored, and the material would be called “water-
wetting”. If the surface chemistry is non-polar, the medium may be oil-wetting,
and mixed-wet media (in which the solid surface is water-wetting in some places,
and oil-wetting in others) are also common. As the terminology implies, this is of
particular interest in the petroleum industry, where it is found that oil can be readily
pushed out of water-wetting rock by injecting water, but injecting water into oil-
wetting rock takes more work and produces little oil.

3.4 Single-Fluid Transport Properties

In this section we consider permeability, dispersion, and electrical conductivity in a
medium saturated with a single fluid. The subsequent Sect. 3.5 examines the more
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complex case of a medium simultaneously occupied by two immiscible fluids, and
restricts discussion to permeability. In both sections the presentation focuses on soil
and rock, drawing on classical texts in the field (e.g., [7, 29, 36, 46, 60]) as well as
the extensive literature of soil science, hydrology, and petroleum engineering.

The fundamental physics of flow in porous media is classical Newtonian mechan-
ics, even though many natural porous media are not strictly Euclidean. The physics
of porous media does not use concepts that are foreign to physicists, although dis-
cussions may seem opaque to physicists. The soil science community generally
distinguishes between soil physical properties (comprehensive descriptions of the
pore and particle space as well as mechanical properties), soil hydraulic properties
(describing the flow of fluids through the medium), and soil transport properties
(diffusion, electrical conductivity, dispersion, and advection of both sorbing and
non-sorbing solutes). Such distinction between flow and transport masks the fact
that all conductivities, whether thermal, electrical, or hydraulic, are proportionality
coefficients in the same equation in which a flux, J , is proportional to the negative
of a potential gradient, −∇Ψ . While the general problem of flow in porous media
is described by the Navier-Stokes equations, at the low Reynolds number flows usu-
ally encountered in geological porous media this equation reduces to J ∝ −∇Ψ ,
with the hydraulic conductivity as the proportionality constant. A major goal of soil
science has been to predict hydraulic properties from physical properties, then to
predict transport properties from the physical and hydraulic properties. Most treat-
ments (“pedo-transfer functions”) have been based either primarily on empiricism
or on numerical simulations. This book shows an alternative path to making predic-
tions of flow and transport properties.

It is surprisingly difficult to predict a porous medium’s transport properties, as
attested by the long history of attempts. For example, consider fluid flowing through
a volume of sand, and suppose that the individual pores are short cylindrical tubes
that connect at pore bodies. Flow through any individual tube is given by Poiseuille’s
law,

Q = −πr4

8η

�P

L
, (3.2)

where Q is the flux (volume of fluid crossing a plane normal to the tube’s axis in
unit time, having units L3 T−1), r is the tube’s radius (L), η is the fluid’s dynamic
viscosity (M L−1 T−1), and �P is the pressure drop in the fluid over a distance L. In
this formulation, pressure is given as energy per unit volume, with units L M−1 T−2.

If we know the porosity of the sand, and the distribution of r within it, can we
predict an effective conductivity for the whole medium? The widely-used Kozeny-
Carman equation [19, 82] uses the mean radius of the solid particles, rs, to give

q ≡ Q

A
= − Φ2

45η
r2

s φ3 �P

L
, (3.3)

where the flux density q has units of velocity, A (L2) is the cross-sectional area
through which flow occurs, and the sphericity Φ of the particles corrects for non-
spherical shapes. This relationship works fairly well for laminar flow through a bed
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Table 3.1 The three Pythagorean means, and what they imply when applied to a general conduc-
tivity g. The weights, given here as volume fractions fi , are assumed to sum to 1

Mean Equation Hölder
exponent

Implied topology of a resistor network

Arithmetic 〈ga〉 = ∑N
i=1 figi 1 Resistors in parallel

Geometric 〈gg〉 = ∏N
i=1 g

fi

i 0 Resistors in a random 2D lattice

Harmonic 〈gh〉 = 1/
∑N

i=1
fi

gi
−1 Resistors in series

of randomly packed round particles with a narrow particle size distribution, but as
these many qualifiers indicate, this is far from a general relationship. The equation
was derived by assuming that the particles form equivalent tubes extending the entire
length of the medium, such that flow in each tube is parallel to flow in all other
tubes [7]. Semi-empirical corrections then adjust for the tortuosity of the flow (the
deviation from straight-line travel along each individual flowpath), the converging-
diverging nature of the porespace, and the non-circular cross-sections of the pore
throats. If a wide pore size distribution is used, the permeability predictions differ
widely from measured values [10].

The Kozeny-Carman equation (Eq. (3.3)) serves to illustrate several points that
apply broadly to studies of transport in porous media. First, the field of porous me-
dia has a long history of empirical relationships, many of which still form the basis
of engineering practice and give reasonable values within their established range
of variables. Second, many of these empiricisms predict a property using measure-
ments that are not closely related to the property of interest, but which happen to
be available: for example, it is relatively easy to measure porosity and particle size.
Third, many semi-empirical methods use good physics reasoning in calculating the
behavior of a single pore: for example, in a single-phase flow calculation it makes
sense to abstract the porespace as being composed of cylindrical pores, or slit pores
if those are more appropriate. Fourth, empirical corrections such as tortuosity often
take on a life of their own, although there is little agreement as to what they actually
mean or how to assign values to them. And finally, historically the greatest concep-
tual difficulty has involved the issue of upscaling from a single pore to the whole
porous medium.

Upscaling from pore to medium is central to what percolation theory con-
tributes to the field of porous media. However, upscaling is conventionally per-
formed through the use of a mean. The three best-known means, dating back to
Pythagoras, are the arithmetic mean, the geometric mean, and the harmonic mean
(Table 3.1). When these means are applied to conductivity, each implies a specific
topology or connectivity. Clearly the effective conductivity cannot exceed the arith-
metic mean, because the pores cannot be more parallel than parallel; neither can
the effective conductivity be less than the harmonic mean, because pores cannot
be more serial than serial. But these bounding cases represent special topologies
that don’t represent most natural materials: most porous materials are disordered,
intermediate to these two bounding cases. In fact, there is little consensus in the
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porous media community regarding which mean (if any) applies to a given physi-
cal situation. For example, “The effective conductivity is found to be the harmonic
mean for one-dimensional flow, the geometric mean for two-dimensional flow, and
[7/6 times the log variance, times] the geometric mean for three-dimensional flow”
[55]. This fundamental confusion underlies most of the mistaken efforts in “upscal-
ing.”

Scheibe and Yabusaki [121] argued that the upscaled hydraulic conductivity must
lie somewhere between the harmonic and the arithmetic mean, and that the appro-
priate upscaling condition had to be consistent with

〈g〉 =
[∑

(gi)
−z

]−z

(3.4)

choosing some exponent z in −1 < z < 1. They then used extensive modeling to try
to identify trends of the exponent z. It is true that for any specific case, some value
of z in Eq. (3.4) must yield the correct value of 〈g〉. However, their conclusion does
not follow, as variations in the required value of z do not track observable variables
logically or predictably.

Efforts to predict a porous medium’s transport properties have often focused on
the fact that the actual fluid pathways through the material are typically longer than
the straight-line distance. The ratio of these two distances, called the tortuosity and
denoted τ (with τ ≥ 1), is frequently invoked in derivations, but in practice is often
used as a fitting parameter [27], often with physically nonsensical values. Tortuosity
and connectivity are considered as separate and independent of the averaging, such
that they are then “added in” later, usually in an empirical manner to bring the
predictions closer to measurement. Tortuosity and its applications will be discussed
more in Chap. 11; for now we simply remark that the concept is widespread but
inconsistently used.

The problem of assigning an effective property to an inhomogeneous material is
variously called homogenization, effective medium theory, or theory of composites.
This area of physics remains largely unknown to most soil scientists and hydrol-
ogists, so various empirical approaches have come into practice. These tend to be
specific to the problem at hand, developed without explicitly recognizing that ho-
mogenization is being performed. Apparently unrelated disciplines may use similar
empiricisms, and yet one discipline may use multiple empiricisms for different man-
ifestations of the same underlying physical process. For example, in soil physics,
description of three related processes—solute (liquid-phase) diffusion, gas-phase
diffusion, and electrical conductivity—use different, unrelated empirical constitu-
tive relationships for their saturation dependence, yet we show here that they all
follow the identical relationship, Eq. (2.8) or equivalently, Eq. (2.11).

All measurements take place at some scale, but the soil science and hydrology
communities have a mixed record of recognizing this. Geological porous media
are quite variable, but traditionally variability has been “handled” by assuming that
above some scale, the “representative elementary volume” or REV, the properties
become constant and invariant with position. For example, measuring porosity of a
sand dune (mean diameter 1 mm) at the μm3 scale will return values from 0 to 1. At
the mm3 scale, individual measurements will still vary significantly, and not until the
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measurement scale is around a cm3 will individual measurements be close to each
other. The REV for a given property is the scale at which repeated measurements
return similar results [7]. Similar thinking is found in the field of geostatistics [70],
which describes how variability between samples taken from nearby locations is
a function of the distance between them. Most geostatistical models assume that
beyond some separation distance the samples are independent of each other, so at
large distances the sample-to-sample variability reflects a system-scale variance.
That is, both the REV and geostatistics reinforce the assumption that variability has
an upper scale, above which properties may be averaged. This assumption is both
unnecessary, and frequently misleading. What percolation theory has to say about
the REV is treated in Chap. 9.

The derivation of an expression for an effective hydraulic or electrical conduc-
tivity at a larger scale, in terms of the variability it exhibits at smaller (e.g., pore)
scales, is termed “upscaling” in the porous media community. However, we make
no distinction between upscaling at the pore scale and upscaling at larger scales,
such as field scales in soils or formation scales in rocks. The particular strategy may
change with scale, but percolation theory must in principle be relevant at all scales.
Interestingly, the porous media community views these two cases quite differently.

3.4.1 Permeability

The permeability of a porous medium is its capacity to transmit a flowing fluid.
A medium’s permeability is a property of great practical value: for example, it
should be low for a dam, but high for a catalytic converter. The science of fluid flow
in porous media is based on the Navier-Stokes equations, although the treatment
might be more accurate if interactions between the water and the particles were in-
cluded. For our purposes it is not necessary to consider the full Navier-Stokes equa-
tions, because when velocity advection is not important (low Reynolds numbers,
laminar flow) the Navier-Stokes equations reduce to linear response, analogous to
Fourier’s law for heat conduction, Ohm’s law for electrical conduction, and Fick’s
law for diffusion. Considering typical pore radii in the micron to millimeter range,
and typical flow velocities less than 10−3 cm/s, one finds Reynolds numbers as low
as 10−5, and the linear approximation is seldom in jeopardy [7].

In the porous media community, this linear response—the flow is proportional to
the pressure gradient—is known as Darcy’s law, which in 1D macroscopic form can
be written

q = −k

η

�P

L
, (3.5)

where the coefficient of permeability k (L2), usually just called the permeability, is
considered an intrinsic property of the medium. If pressure is expressed in terms
of the height of the water column required to produce it, h ≡ P/ρg, then the pres-
sure gradient is unitless. Conveniently, gravity-driven flow in a column of arbitrary
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height, with no water ponded on the surface, produces what is called a unit gradient,
i.e., a pressure gradient �P/L = h/h = 1. Meanwhile, multiplying k by ρg/η gives
the “hydraulic conductivity” K , a proportionality coefficient with units of length per
time. Expressing K as a velocity gives a measure of how fast water with a given
depth can “infiltrate” into the soil, and also gives an estimate of the pore-scale water
velocity.

Because Eq. (3.5) separates the medium’s property of permeability from the
fluid’s property of viscosity, we can in theory measure permeability of a medium
using one fluid, and apply that result to a different fluid. But in practice this may
not work, because fluids vary in their interaction with the medium. For example,
measuring permeability of a clay soil to both air and water will give a higher value
for air, because water is much denser than air and wets the clay surfaces whereas air
does not; more fluid interaction with the medium results in greater resistance adja-
cent to the solid surface. This issue can be important, for example in porous media
with high specific surface areas when we compare strongly wetting and strongly
non-wetting fluids, but we ignore it in this book. We also do not devote much space
to the issue of anisotropy, even though it is common in geological materials.

As implied by the units of permeability (L2), permeability scales with the square
of the pore size; the Kozeny-Carman equation’s (Eq. (3.3)) squaring the charac-
teristic length makes physical sense. (The fourth power in the Poiseuille equation,
Eq. (3.2), is decreased by the square of the radius when we assume that the medium
has a constant volume.) More broadly, soil scientists recognize so-called Miller-
similarity [97], in which properties of soils that differ only in their characteristic
length scale (e.g., mean pore size) can be scaled through simple dimensional analy-
sis.

The experiment which resulted in Darcy’s [33] law involved measuring both the
flux of water through a vertical column filled with uniform sand, and the pressure
drop across the length of the column. The basic procedure has not changed much
[110], although nowadays one typically uses samples that are 5–10 cm tall in con-
trast to Darcy’s 3.5 m column. The procedure is subject to several confounding
influences that can be difficult to control:

• If the sample is not completely saturated with the test fluid, then the measured
permeability will be less than it would be at complete saturation; this is especially
true if a wetting liquid is used (because the non-wetting liquid will preferentially
partition into larger pores which contribute more to flow; see the next section).

• The porespace must not change over the course of the measurement, as for exam-
ple by microbial growth clogging the pores, particles being entrained and moved
by the flowing fluid, or gas exsolving from the flowing liquid.

• Fluid flow must be slow enough to avoid turbulence, but if it is too slow, especially
with flow of a wetting liquid through a high surface area medium, some non-
Newtonian artifacts may appear [127].

• When working with a loose material such as sand, packing the column to the
correct density is no guarantee that the properties of the native material are re-
produced, because both intact and disturbed materials are likely to have some
internal stratification which can affect the end result. Additionally, coarse round
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particles in a column yield a locally high porosity around the perimeter, and the
“wall flow” through this region can significantly increase the flux.

• Loose materials must be held against falling out of the column, and the end cap
used for this purpose contributes hydraulic resistance which should be accounted
for, but which rarely is in practice. Interestingly, Darcy’s [33] experimental setup
(his Plate 24, Fig. 3) shows this exact error: he did not separate the pressure drop
across the end material from that in the sand, and this same error is still common
(e.g., [76]).

• Consolidated materials present their own challenges. For example, if a soil is
sampled dry and then wetted, it may expand; if it is sampled moist and then
dried for measuring permeability with a gas, it may shrink, creating wall flow
artifacts much greater than those seen in a column of loose sand or gravel. So-
called shrink-swell soils therefore present additional measurement issues.

Permeability can also be estimated from ancillary data, and such estimates constitute
a significant thread in current soil and hydrologic research. The problem is complex
because it is not only the texture (particle size distribution) and porosity that de-
termine permeability, but also the degree of randomness of the porespace, which is
difficult to quantify and is dynamic in some materials (e.g., soils). The current state
of the art uses artificial neural networks, illustrating both the recognition of com-
plexity, and an implicit concession that a sound physically-based method may not
be found.

Given the current understanding of the permeability (or hydraulic conductivity)
of porous media, there are no exact results for media with an arbitrary microstruc-
ture. As a consequence there has been some interest in developing upper and lower
bounds of the hydraulic conductivity and exact solutions of simplified problems.
A summary of such results is given by Sahimi [115, 116]. These results include
slow fluid flow through a dilute cubic array of non-permeable spheres by the Stokes
equation [59]; an extension of this result to all three types of cubic lattices [119];
the same problem using a transformation to a set of Fredholm’s integral equations
of the first kind [150]; harmonic expansions in spherical coordinates for cubic pack-
ings [85]; and treatments of Childress [24], Howells [63], and Hinch [62]. Other
results are for mixtures in which both components are permeable, including solu-
tions for upper and lower bounds of the hydraulic conductivity [12, 108, 144, 145].
Sahimi comments, “in all cases that have been discussed so far [several more than
those mentioned here], the Kozeny-Carman empirical formula falls within 15 % of
the results for at least one of the three types of periodic packings if [the porosity is
less than half]” [115]. On the other hand, in disordered media the Kozeny-Carman
prediction of K came in dead last when compared with treatments by Katz and
Thompson [73], Johnson and Schwartz [69], and Bernabé and Revil [11], missing
the numerically verified result by orders of magnitude [10].
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We mention here the upper bound, k0, on the permeability of a collection of solid
spheres [132], given as

k0 = 2
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〈r3〉2

(1 − φ)〈r〉2
≈ 2

9

(
5 − Ds

6 − Ds

)2[

1 + 2

(
r0

rm

)5−D

− 2

(
r0

rm

)6−D]
r2
m

1 − φ
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Here r refers to the particles, i.e., the solid space. The expression is written explic-
itly for the Rieu and Sposito model (Chap. 4), and the result for k0 is, asymptotically
in the “polydisperse limit” (large range of sizes), a constant factor times the square
of the largest particle size, rm. rm will typically be proportional to the maximum
pore radius, with the proportionality constant a diminishing function of the poros-
ity; however, neither φ nor (1 − φ) to a negative power is such a function. Clearly
Eq. (3.6) is larger than Kozeny-Carman treatments (Eq. (3.3)), consistent with its
being an upper bound. The Stokes dilute-limit permeability follows the same gen-
eral form [132], with slightly different second and third terms in the square brackets.
These dilute-limit results do not apply in the limit of small porosity, where the per-
meability must vanish. But k0, as in the various theoretical approaches summarized
in Bernabé and Bruderer [10], is proportional to the square of a maximum radius.
This kind of result is generated by critical path analyses as well [65, 73]. It is inter-
esting that Eq. (3.6), like Eq. (3.3), produces a factor of 1−φ in the denominator, but
unlike Eq. (3.3), Eq. (3.6) does not produce a proportionality to φ in the numerator.

In strongly disordered media, the weighting function that is applied to local con-
ductivities to generate the system conductivity is not monotonic in the conductiv-
ity. The weighting function thus cannot be consistent with a power-law averaging.
This has been verified both in solid state applications (see [94, 106]) and for fluid
flow in porous media [10]. This non-monotonicity occurs because the quasi-one-
dimensional paths, along which the optimal conduction occurs, are dominated by the
largest resistances on these paths. Smaller resistances in series are so much smaller
that they do not contribute substantially to the total resistance; larger resistances in
parallel are never encountered. As stated by Bernabé and Bruderer [10], the pres-
sure field for strongly disordered media is controlled by a few large potential drops
due to the critical elements (bottlenecks), making stochastic (small-disorder = ho-
mogeneous in the mean) treatments unappealing. Only approaches that are based in
percolation theory are consistent with this observation.

3.4.2 Dispersion

Dispersion involves the displacement of one fluid by second with which the first
is infinitely miscible. For example, when water with a dissolved contaminant flows
into a previously uncontaminated aquifer, the contaminated water disperses into the
uncontaminated water. The contaminated water does not propagate as a stable front
moving at the mean velocity of the incoming water (what is called “piston flow”);
rather, it disperses due to multiple factors. Of these we identify three: the different
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Fig. 3.4 a: Simple apparatus
for measuring dispersion in
saturated flow. b: 4 example
breakthrough curves

flow velocities operating at multiple scales due to different pore sizes and pore struc-
tures, diffusion across what may be a fairly steep concentration gradient, and chemi-
cal interactions that may either retard (e.g., sorption) or accelerate (e.g., attaching to
a mobile colloid that is excluded from small pores) an individual molecule’s move-
ment. In experiments, chemical interactions can be largely eliminated through the
use of non-reacting tracers. The relative roles of flow heterogeneity and diffusion de-
pend on the heterogeneity of the porous medium, and the relative rates of advection
and diffusion. The observed dispersion—the extent of spreading of the front—varies
with time, distance, and flow rate, in addition to various properties of the fluid and
the porous medium.

The experimental apparatus needed to measure dispersion is quite simple
(Fig. 3.4a). For a simple experiment, the flow rate should remain constant, and
there should be minimal mixing of solutions A and B outside the soil column, e.g.
in the tubing and end caps of the column. Typically the medium is saturated with
solution A, steady-state flow is established with solution A, then the valve changes
the input fluid from A to B. The data are generally presented as a “breakthrough
curve” (Fig. 3.4b), with the x-axis being the volume of fluid normalized by the pore
volume of the sample, and the y-axis being the relative concentration of solution B.

As Danckwerts pointed out, the breakthrough curves typically observed lie be-
tween the extremes of piston flow and complete mixing (not shown in Fig. 3.4).
Certainly in some specific cases (e.g., a single tube, [129]) the dispersion can be
treated as a diffusion analog in a physically consistent manner, so diffusion was
an analogy worth examining. But the CDE’s failure to capture either the behavior
(shape of the curve) or the physics (scaling with time, distance, and velocity) indi-
cates that it is an incorrect phenomenology, and several decades of poor predictions
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indicate the need for an improved conceptual model. From this perspective, the CDE
is yet another failed attempt to upscale directly from one tube to many tubes to a
whole porous medium.

The most common mathematical model used to characterize breakthrough curves
is the convection-dispersion equation (CDE; also called the advection-dispersion
equation or ADE), typically given in 1-dimensional form as

R
∂C

∂t
= D

∂2C

∂x2
− v

∂C

∂x
(3.7)

for solute concentration C (M L−3), retardation R (unitless), dispersion coefficient
D (L2 T−1), and constant velocity v (L T−1). The CDE is based on the assumption
that dispersion in a porous medium is diffusion-like, an analogy that goes back at
least to Danckverts [32]. The equation can be readily modified to account for sources
and sinks, sorption/desorption and other reactions, and degradation, and analytical
solutions have been derived for a variety of initial and boundary conditions (e.g.,
[149]). The CDE is widely used to predict e.g. dispersion of pollutants in aquifers,
but it suffers from many inconsistencies and errors that mainly emerge when com-
paring across scales. Most notably (1) it is widely observed (e.g., [49, 77, 138]) that
the dispersion coefficient increases linearly with velocity, although the equation it-
self does not show that it should; because of this observation, the propensity of a
medium to disperse a solute is often given as the dispersivity α (where α = D/v).
(2) The spreading (variance) of the solute is ordinarily observed [123] to scale with
distance with an exponent 2 rather than the linear dependence predicted by the CDE.
And (3) the shape of the breakthrough curve frequently [47] differs from what a
diffusion-like process would produce.

Because the CDE often gives poor fits and predictions, alternative models have
been developed. The mobile-immobile model (MIM) posits that flow occurs in two
separate domains, one dominated by advective flow and the other by diffusion. Flow
in the advective domain is governed by the CDE, in tandem with diffusive (or first-
order) exchange between the two domains. The MIM produces curves like the “non-
equilibrium” curve in Fig. 3.4. This fit some datasets better than the CDE, but at
the cost of two additional parameters (the fraction of the porosity that is “mobile”,
and the mass exchange coefficient). Scaling of the variance with time and/or dis-
tance is still linear. Another alternative, the transfer function model (and especially
the popular convective lognormal transfer function, CLT; [139]) proposes that flow
moves through parallel “streamtubes” that differ in velocity, but with no dispersion
within or between streamtubes. The resulting breakthrough curve has a variance that
scales with time or distance squared (as is often observed), but because it assumes
a specific distribution of velocities it does not always give good fits. Like the other
models, it does not explain why dispersion should scale with velocity.

The continuous time random walk (CTRW; [8, 78, 122, 123]) model, developed
in the context of hopping transport in semiconductors ([122], for example), provides
an alternative to the previous models. The CTRW is a very general transport model
that does not make explicit reference to (for example) pores, viscosity, or diffusion.
The CTRW can cover a range of scaling behaviors with respect to time or distance,
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and a single parameter controls both the shape of the breakthrough curve, and the
scaling exponent. This parameter is empirical (fitted) rather than being derived from
more fundamental properties of the medium, but aside from this one shortcoming
the CTRW is the best solute dispersion model in common use at this time.

As pointed out already 25 years ago [117], percolation scaling, justified by the
relevance of critical path analysis, offers a reasonable explanation for the scaling
properties of the dispersion. What we will show is that a full percolation treatment,
consistent with scaling concepts and critical path analysis, makes a much wider
range of verifiable predictions. Although we have not found a simple correspon-
dence between this percolation treatment and CTRW, that correspondence may yet
be found.

3.4.3 Electrical Conductivity

To a first approximation, electrons flowing through saturated soil or rock travel
through the liquid, rather than through the solids or along the liquid/solid inter-
face. For flow through a tube, electrical conductivity scales with the cross-sectional
area available to the current. In the case of a saturated isotropic medium, the cross-
sectional area is equal to the porosity, so we might expect that saturated electrical
conductivity would scale with the porosity. What is observed, however, is not a lin-
ear relationship in φ. This is partly because in some media, non-negligible current
flows along the interface (e.g., [22, 111]); the other cause is that flowpaths become
sparser and more tortuous as porosity decreases, phenomena well described by per-
colation theory.

In geophysics and petroleum engineering, rock is often characterized by its for-
mation factor F , given as

F ≡ R0

Rw
(3.8)

where R is electrical resistivity, and the subscripts 0 and w respectively denote
the saturated medium and the saturating fluid [29]. In the case of a saturated rock,
Archie [2] observed that

F = aφ−m (3.9)

where the prefactor a is ascribed to tortuosity, and the exponent m (usually in the
range 1.5–2.0) is attributed to the degree of cementation of the rock. This empiri-
cal relationship has been accorded the status of a law (“Archie’s law”) in the geo-
physics literature, although it lacks a theoretical basis [74]. Archie’s law will be
further addressed in Chap. 6, where we show the connection with universal scaling
of conduction.

In addition to porosity and tortuosity, one may also find discussion of constric-
tivity [136], the ratio between the radius of a pore body and a pore throat. This is
another example of focusing on detailed properties of individual pores, while ignor-
ing the more significant issues involved in upscaling from pore to porous medium.
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3.5 Multiple-Fluid Properties and the Role of Pore Occupancy

When a porous medium is occupied by two immiscible fluids, how the fluids are
distributed within the pores varies according to specific properties of the solid (pore
size distribution, pore connectivity, and surface chemistry), the liquids (especially
how polar they are, and their interfacial energy), and the history by which they came
to be there. In this section we discuss pore occupancy and its consequences, as it is
central to understanding transport in unsaturated media.

Historically, hydrologists and civil engineers have focused mainly on saturated
media, where the process of interest is flow. In contrast, soil scientists and petroleum
engineers have concentrated on unsaturated media, where retention or storage is
equally important and two-phase systems are the norm. The physics of soil is in
many ways similar to the physics of petroleum reservoirs, and of aquifers contam-
inated with a non-polar pollutant: in each case, two different fluids compete to oc-
cupy the pores, and the several similar processes lend themselves to similar analyses.

Under most conditions, a geological porous medium’s pore space is completely
occupied by air and/or water. The volume fraction of the water is usually denoted θ ,
and the air-filled porosity ε. Assuming a constant volume, φ = θ + ε. Again, under
most conditions in geological porous media, water is the wetting fluid and air the
non-wetting. For simplicity the following is largely presented in terms of air and
water, but is not limited to them.

3.5.1 Wettability, Pore Size, and Capillarity

When water and air touch each other and a flat solid surface (Fig. 3.5a) in a static
configuration, forces must balance at the contact point as given in Young’s equation:

γsa = γsw + γwa cosα, (3.10)

where γ is interfacial energy (M T−2), α is the contact angle, and the subscripts
s, w, and a respectively denote solid, water, and air. Generally one fluid wets (has
contact angle <90°) the solid, in which case we refer to it as the wetting fluid and
the other as the non-wetting fluid. Note that a given fluid may be either wetting or
non-wetting, depending on what the other fluid is: oil wets mineral surfaces when
competing with air, but not when competing with water. Unless otherwise specified,
“saturated” implies saturation with the wetting fluid.

A curved interface between two immiscible fluids indicates a pressure difference.
For example, in Fig. 3.5a, the water is at a slightly higher pressure than the air. The
pressure difference, called the capillary pressure pcap, is related to the meniscus
curvature by the Young-Laplace equation:

pcap = pw − pa = γwa

(
1

r1
+ 1

r2

)

, (3.11)
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Fig. 3.5 a: Forces acting at
the contact point of a solid
and two fluids. b: Capillary
rise in three tubes with
different radii and contact
angles. The left tube is
hydrophobic, while the center
and right tubes are
hydrophilic

where the relevant interfacial energy γ is that between the two fluids, and r denotes
the radius of meniscus curvature, with subscripts 1 and 2 denoting (any) two orthog-
onal directions. For the case of capillary rise, with liquid at equilibrium in a vertical
tube with circular cross-section (Fig. 3.5b), the downward force is πr2h(ρw −ρa)g,
balanced by the upward capillary force 2πrγ cos(α). Rearranging gives the capil-
lary equation

h = 2γ cosα

(ρw − ρa)gr
(3.12)

for height of rise h, gravitational acceleration g, tube radius r , and fluid densities
ρw and ρa. Notice that all water in the tube that is above the free water surface is at a
negative pressure. Because pressure is exerted by a standing column of water, earth
scientists often express pressure in terms of the height of the water column required
to produce it. For a given solid (constant contact angle) and pair of fluids (constant
surface energy and density difference), the capillary equation reduces to h = A/r .
Interpreting h as a capillary pressure, the practical import is that the capillary pres-
sure required to push a non-wetting fluid into a pore, or to pull a wetting fluid out of
a pore, is inversely proportional to the pore’s (effective) radius.

The physics concept of capillary rise in a tube is related to the concept of water
potential in the soil, a unifying concept that goes back to Buckingham [16]. Suppose
that a tube (manometer) is connected through a porous cup to a porous medium at a
position above the free water surface or water table, as in Fig. 3.6. The height of wa-
ter in the manometer, −h, is negative relative to the height of the porous ceramic cap
in the soil, and the water pressure in the soil is less than the atmospheric pressure Pa
at the air/water interface by P = −(ρw −ρa)gh. Likewise, the positive height in the
manometer having its porous cap below the water table indicates a positive pressure
at that location. h is thus energy per unit weight (in a given volume), called pressure
head when positive, matric head when negative, or often just head. If instead we
used energy per unit volume, we would have a pressure (M L−1 T−2); if we used
energy per unit mass, e.g. J kg−1, we would have units L2 T−2. Because the main
components of potential (and the main drivers of flow) in geological porous me-
dia are pressure and elevation, it is convenient to express the potential in equivalent
heights.

The energy state (potential) of the water in soil is defined with respect to pure
water at a reference elevation, and at standard (or some other reference) temperature
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Fig. 3.6 A soil profile, with water at equilibrium with the water table. Water in the manometers
connects to the soil water through a porous ceramic cap. Water in the soil above the water table is
at a negative pressure given by its height above the water table; water below the water table is at a
positive pressure

and pressure. Specifically, the water’s potential is the work per unit weight that must
be done on an infinitesimally small amount of pure water to bring it into the soil from
the reference pressure and elevation. (The stipulation “small amount” is a necessary
condition so as to prevent the change in water content from changing the condition
of the soil. A similar stipulation applies in electrodynamics, where a field is to be
detected with an arbitrarily small test charge.) As this statement implies, the energy
state of water is affected by elevation, pressure (positive or negative), the presence
of solutes, and temperature. The potential’s several components are additive, thus
the total potential Ψ is the sum of the elevation potential z, the osmotic potential P ,
the pressure potential h, and so on.

The presence of solutes in liquid water lowers the partial pressure of water vapor
across a flat interface, an effect similar to that of a curved interface as expressed by
the Kelvin equation. Note that dissolved salts will change the surface energy and
viscosity of the water in addition to decreasing its osmotic potential. The complex
effect of temperature, while occasionally acknowledged, is largely ignored in the
earth science literature, as is the complex coupling of heat and water movement.
Likewise, in this monograph we will largely ignore thermal and osmotic contribu-
tions to water potential, focusing on pressure.

Given the questionable assumptions involved in applying the capillary equation
to soil and rock, it is remarkable that it has proven so useful. The assumption of
a smooth surface is clearly incorrect for most natural materials. The effect of the
contact angle is modified by the surface roughness, as manifest in such phenomena
as super-hydrophobicity [83]. Calculating capillary rise is more complex even for
something as simple as a sinusoidally varying smooth-walled tube [31], so faced
with rough surfaces and multiple orientations, one generally makes the very practi-
cal assumption that pores are straight and smooth-walled. Likewise, one could as-
sume that pores have non-circular cross-sections (e.g., [133]), but in practice circu-
lar cross-sections are almost always assumed. Finally, the assumption of a constant
wetting angle is also incorrect for many natural materials. Soils are generally hy-
drophilic (water-wetting), but organic matter in the soil may be hydrophobic, and the
organic matter content in soil changes with depth and position. Similarly, the min-
eral surfaces in oil reservoirs may change over geological time from hydrophilic to
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Fig. 3.7 a: Sketch of the apparatus for measuring the drainage limb of the pressure-saturation
relationship. The porous plate at the bottom of the pressure chamber passes water (wetting fluid)
but not air. b: An example pressure-saturation relationship, showing both drainage (drying) and
imbibition (wetting). The x-axis gives relative saturation, abbreviated S (= θ/φ)

hydrophobic, for example by tarry substances precipitating into patches on the rock.
This gives rise to the so-called “mixed-wet” condition, in which both hydrophobic
and hydrophilic patches are found throughout the solid surface [126].

It is convenient to assume that at any given time, a pore is completely occupied
by either the wetting or the non-wetting fluid. This useful concept, called the strong
wetting assumption, is correct mainly at the extremes, when the medium is occupied
only by a single fluid. In intermediate cases, a pore that is largely occupied by non-
wetting fluid may still have wetting fluid covering the surfaces. For a smooth solid
surface this occurs only if the contact angle is zero, but the pits and cracks on rough
surfaces may hold non-negligible quantities of water [130]. Water is also held in the
form of pendular structures (capillary bridges) around the point of contact of two
solid grains [103, 112, 134]. Estimates of the fraction of water in these locales vary,
but more important than the quantity is that this non-pore-filling fluid can maintain
continuity of a strongly wetting fluid.

3.5.2 The Pressure-Saturation or Water Retention Curve (WRC)

The relationships between capillary rise, pore sizes, and pressure difference across
the air/water interface make possible a procedure for measuring the pore size dis-
tribution. We start with the observation that, for an imposed pressure difference P

between air and water, we can calculate the equivalent head: P/ρg = h. At equilib-
rium, only those pores with radius r < A/h will contain water.

Removing water from an initially saturated medium requires work, which in a
laboratory setting is usually applied in the form of an imposed air pressure. The sat-
urated sample is subjected to sequentially increased air pressures, and the expelled
water is measured at each step (Fig. 3.7). The chamber holding the sample must
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Fig. 3.8 a: The drinking cups are prevented from draining or filling solely by accessibility.
b: A large pore (striped) prevented from draining by water-filled smaller pores surrounding it.
c: An “inkbottle” pore, a minor contributor to hysteresis in the pressure-saturation curves. Adapted
from [66]

withstand the pressure without leaking, as even a small air leak sustained over many
days may artifactually dry the sample. A key component is the material on which the
sample rests: it must be permeable to water, but not to air, at the pressures applied.
In typical laboratory settings this is a sintered glass or ceramic. Sufficient time must
be allowed for each step, so the water will drain to equilibrium with the imposed air
pressure. For typical soil samples (5–10 cm high), the approach to equilibration at
low pressure may take a day, but time to equilibrium increases rapidly as the sample
desaturates; this issue is discussed more in Chap. 8.

The relationship shown in Fig. 3.7b, and especially just the drainage curve, is
variously called a pressure-saturation curve, a water retention or water release curve
(WRC), and a soil water characteristic curve. The saturation may be given as volume
fraction of water θ , or as relative saturation S = θ/φ. The drainage (or drying) curve
is faster to measure than the imbibition (or wetting) curve, so often only it is actually
measured, and the imbibition curve (if needed) is estimated. When drying starts
from saturation a primary drying curve is produced; if instead drying started from
the wet end of a wetting curve, a secondary drying curve (not shown) is produced.
The relationship is hysteretic, for reasons discussed below.

We note in passing that the WRC shown in Fig. 3.7b violates the usual conven-
tion of showing the independent variable (pressure) on the x-axis. The reason is
that, displayed this way, the drying curve shows the vertical saturation profile of the
medium after it has drained to equilibrium, with the water table at the bottom (zero
height = zero pressure).

The drainage process is essentially bond invasion percolation, and a percolation
perspective informs our presentation. Draining a water-filled pore requires that three
conditions be met (Fig. 3.8): the air pressure must be such that the pore will drain
according to the capillary equation, air must be able to enter the pore (the pore must
be on the air infinite cluster), and water must be able to leave the pore (the pore must
be on the water infinite cluster). This third condition is guaranteed if we consider
water flow through films covering the solid surface. The first condition makes the
pore “allowable”, while the second and third make it “accessible”. This perspective
is largely lacking in the earth sciences, where only allowability is considered.
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Accessibility of a given pore requires it to be on the air/water interface. When a
medium is close to saturation (very little air has penetrated into the pores), a large
pore may be allowable without being accessible, and consequently will not drain
(Fig. 3.8b). When the pore becomes accessible at a higher pressure, the volume
of water that drains will be attributed to that higher pressure, resulting in under-
estimation of large pores and over-estimation of smaller pores.

Two asymmetries distinguish wetting from drying and contribute to hysteresis.
First, draining from an initially saturated state involves just one phase transitions:
when air (non-wetting phase) first percolates. As the wetting phase, water is always
continuous. But wetting from an initially dry condition involves two phase transi-
tions: one when water first percolates, and one when air no longer percolates. The
second asymmetry is that drainage is controlled by the pore necks, while imbibition
is controlled by the pore bodies. Specifically, for a pore to be allowed to drain, the
meniscus’ radius of curvature must be less than the pore throat’s radius, while for
a pore to be allowed to imbibe, the meniscus radius must be greater than the pore
body’s radius. Consequently, the water content for a given tension (meniscus curva-
ture) is always higher during drainage than during imbibition. This effect, which is
not eliminated by film flow, is called the ink-bottle effect (Fig. 3.8c).

In the soil physics and hydrology literature, hysteresis between the drying and
wetting curves is largely attributed to the ink-bottle effect. But the ink-bottle effect
can contribute only a scalar shift to the curve [38]. Most hysteresis is caused by
the distinction between allowability and accessibility: during imbibition, a small
pore surrounded by large pores may not have access to water until the large pores
have filled, delaying its filling. Meanwhile, a large pore surrounded by smaller pores
(Fig. 3.8b) may not water-fill at all, because air in it is trapped, being unable to leave
through the smaller pores. Trapping prevents the wetting curve from attaining full
saturation (Fig. 3.7b) [38], a phenomenon which the inkbottle pore concept cannot
explain. Both hysteresis and trapping are reduced by higher pore coordination, and
by an increase in pore structure (preferential connection of larger pores) [39].

3.5.3 Obtaining a Pore Size Distribution

In principle, and if accessibility constraints are ignored, then analysis of dθ/dh from
a WRC over the full range of h yields the pdf for the pore-size distribution. In the
earth sciences it is widely assumed that the pore size distribution can be produced
by translating the heights in the pressure-saturation curve into equivalent pore radii
via the capillary equation (3.12). This appealing assumption forms the basis of the
unsaturated hydraulic conductivity models (e.g. [17, 25, 98, 101]) used in soil, hy-
drologic, and climate models. But it is based on several questionable assumptions
which are rarely acknowledged:

• The pore radius that controls drainage is the same pore radius that controls flow
(but recall that each pore may have several throats, while drainage is triggered
when the air-water interface passes through just one of them).
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• The volume of water drained through a particular pore flows entirely within a pore
of that radius (but recall that pores tend to have a converging/diverging geometry).

• The pores are effectively circular in cross-section and smooth-walled, enabling
use of the same radius in both Poiseuille’s law (3.2) and the capillary equation
(3.12).

• The pores have a constant contact angle α = 0 throughout the medium, although
a different (but still constant) contact angle can be substituted if known.

• All water is pore-filling water (the strong wetting assumption): no water is held
in films, surface pits and cracks, capillary bridges, etc.

• During measurement, the sample has time to drain to equilibrium (but equilibrium
is reached asymptotically, so this is at best approximately correct).

• During measurement, all water in the sample is at the same matric potential (but
this cannot be true, because the sample has non-zero height).

• During measurement, all pores that are allowable are also accessible (but this can
be true only for a few special cases, e.g. all pores extend the entire length of the
sample. Recall that drainage is an invasion percolation process).

• The sample is representative (which is difficult to assure, given the variability of
geological materials).

• There is no effect of sample size on the results obtained (but note the contradiction
between needing a large sample to be representative, and a small sample to avoid
a height effect).

To echo an earlier comment, given the many questionable assumptions at play, it
is remarkable how well predictions often work. Nonetheless, one cannot help but
wonder how much better they would be if the physics were more comprehensive
and defensible.

There are other methods available for obtaining a pore size distribution. A satu-
rated salt solution can dramatically decrease the partial pressure of water, producing
the equivalent of extremely low capillary pressures, such that the dry end of the
pressure-saturation curve is sometimes produced by water vapor equilibration over
saturated salt solutions (e.g., [72]). After water retention, the most common method
used in the earth sciences is mercury intrusion [50, 142], which is analogous to
the WRC: mercury (non-wetting) is injected at controlled pressure steps into a dry
sample under vacuum (or, more strictly, saturated with mercury vapor). Mercury in-
trusion is not appropriate for samples that are deformable, as the pressures applied
may be quite high. Other methods that are somewhat similar to water retention and
mercury intrusion include the vapor equilibration over saturated salt solutions [72]
and N2 isotherms [5], both of which are appropriate for pores in the range (roughly)
0.5 nm to 0.5 μm. All of these methods show some degree of hysteresis and trapping,
due to following an invasion percolation-like process. NMR-cryoporometry [143],
which incrementally freezes water in the pores and uses NMR to detect the frozen
volume, shows hysteresis suggesting an invasion-like pattern, and interpretation of
the data is somewhat ambiguous.

Imaging methods such as serial sectioning with reconstruction [148] and X-ray
microtomography [91] do not involve an invasion percolation-like process. They can
give the entire pore network, from which the pore size distribution can be extracted.
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Unfortunately, such methods are expensive, non-trivial to implement and limited by
the trade-off between sample size and voxel size to a few orders of magnitude of
pore sizes.

There are unfortunately few studies comparing pore size distributions obtained
using different methods (e.g., [26]). To our knowledge, Dullien [35, 37] was the
first to point out the discrepancy between soil water retention curves measured with
different methods, e.g., mercury intrusion porosimetry and photomicrography. He
noted that the mercury intrusion method gives the entry pore-size distribution, while
the photomicrography technique provides the distribution of pore volume by all
pore sizes. Pore-size distribution determined by photomicrography is closer to real-
ity than the entry pore size given by mercury intrusion porosimetry [35]. In a related
study, Hall et al. [57] measured the pore-size distribution of shaly rocks with several
methods: small-angle neutron and X-ray scattering (SANS and SAXS), nitrogen ad-
sorption, nitrogen desorption, and mercury intrusion porosimetry. They found that
pore-size distributions measured by SANS and SAXS techniques were in reasonable
agreement with those from the nitrogen adsorption isotherm, but often in disagree-
ment with distributions derived from the nitrogen desorption isotherm and mercury
porosimetry. The question “Which method of pore-size distribution measurement
should be applied?” thus remains unanswered.

Sahimi [116] concluded that each measurement method has its own strong and
weak points. For example, the success of mercury intrusion porosimetry and sorp-
tion isotherm methods requires prior knowledge of the pore space connectivity and
pore shapes [116]. Pore shape also affects the pore-size distribution derived from
scattering methods, and even if the shape is known, the calculated distribution may
still be sensitive to the shape [116].

3.5.4 Widely Used Equations for the Water Retention Curve

Because the translation from water retention curve (WRC) to pore size distribution
via the capillary equation (Eq. (3.12)) is so widely accepted, to a fair extent WRC
models are considered to simultaneously be models of the pore size distribution.
Nonetheless, there is an important difference between the two, centered on the con-
cept of residual or irreducible water.

As a medium dries, the fraction of wetting fluid that is actually pore-filling de-
creases: an increasing fraction of the wetting fluid occurs as films, capillary bridges,
and the like. Because film flow is quite slow compared with pore flow (Chap. 6),
for practical reasons the dry end of the curve is not measured as frequently. Also
recall that the WRC was developed in the context of agricultural soils, and many
plants wilt if deprived of water at a pressure less than −1.5 MPa (15 bars, the ten-
sion created by a hanging water column some 153 m long), the so-called permanent
wilting point. From an agricultural perspective, then, water held more tightly than
−1.5 MPa is not worth considering, and soil water retention curves are generally
measured only to that tension. In such cases the residual water, denoted θr, is specif-
ically identified with the pressure −1.5 MPa. So where the petroleum engineers
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speak of relative saturation, S = θ/φ, the soil scientists more often work with effec-
tive saturation, Se = (θ − θr)/(φ − θr).

One of the earliest, and still most widely used, equations for the pore size distri-
bution is that developed by Brooks and Corey [15] (henceforth BC):

Se =
(

hA

h

)λ

(3.13)

where hA is the air entry (also called bubbling) pressure, the smallest air pressure
needed to drive air upward through the previously saturated sample, and the expo-
nent λ reflects the width of the pore size distribution. BC explicitly measured hA
with air flowing upward to reduce the effect of the sample’s height, considering it
to be a physically meaningful parameter. Pressures h and hA are always positive
(like the air pressure in Fig. 3.7). As Brooks and Corey observe, this equation was
“discovered by plotting log Se as a function of log hγ ”—that is, the equation is
empirical. Note that for h < hA, we assume Se = 1: no drainage occurs until the
air entry pressure is attained, so the curve has a singularity. While the Brooks and
Corey phenomenology was developed pragmatically, its power-law form lends itself
easily to interpretations derived from fractal models of the medium, a chief topic of
Chap. 4.

Motivated by the need for expressions that were both continuous (for numer-
ical stability) and closed-form (for computational speed), van Genuchten (1980)
proposed an empirical function chosen because it is flexible and gives the desired S-
shaped curve. The now widely-used expression for the water retention curve (hence-
forth vG) is

Se =
[

1 +
(

h

hi

)n]−m

(3.14)

where the exponent n characterizes the width of the pore size distribution, and m

is usually constrained to take the value m = 1 − 1/n. The reference pressure hi is
at the curve’s inflection point, an important conceptual difference between the BC
and vG equations. In practice, vG is fit to data collected using an apparatus like that
illustrated in Fig. 3.7a, in which water volume is averaged over the height of the
sample. The vG parameters are fitted simultaneously, with θr and sometimes even φ

considered fitted parameters. These changes effectively deprive vG’s hi of much of
its physical meaning.

The wet end of the pressure-saturation curve is where hA is measured; it is also
the portion of the curve at which the hydraulic conductivity is greatest, so it bears
careful measurement. But it is precisely at the wet end that height averaging is most
pronounced. Even if the “real” curve has a BC-like singularity, averaging over pro-
gressively taller samples will produce increasingly smoother curves (Fig. 3.9). In a
sense, then, the smooth vG is the result of interpreting and restricting data to the
scale of measurement [23, 66, 92]. High-resolution pressure-saturation measure-
ments (e.g., [71, 118]) imply that at least for some media, the “real” curve does
indeed have a BC-like singularity. Jalbert and Dane [68] developed software for in-
ferring the underlying BC from vG curves, and Cheng and Perfect [23] developed
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Fig. 3.9 Calculated effect of
sample height on a measured
pressure-saturation curve

a program for examining height effects on measured pressure-saturation curves of
BC soils.

We mention three additional water retention curve models, to show both the range
and diverse reasoning behind them. Clapp and Hornberger [25] proposed an expres-
sion similar to BC, but with a parabolic section at the wet end to remove the sin-
gularity. While their model is little used in soil physics, it is widely implemented
in climate models (e.g., [102]). Kosugi [81] proposed that the pore size density dis-
tribution had a lognormal shape. His proposed model also attempts to address the
difference between BC’s hA and vG’s hi by including both, resulting in a three-
parameter model. Grant et al. [53] developed an equation designed to produce an
incomplete gamma function when integrated in an unsaturated hydraulic conductiv-
ity model: the final function form was more important than dictates of the physical
basis.

Because it is easier to measure the particle size distribution than the pore size
distribution, there is long history of attempts to predict the pore size distribution (or
the water retention curve) from the particle size distribution. Such predictive tools,
called pedotransfer functions, are ubiquitous in soil, hydrologic, and climate models.
Early point-wise statistical methods used regression models [54] to independently
estimate individual points on the water retention curve. Other regression models [20,
25] predict the actual parameters of a water retention model. More recent statistical
methods use neural networks [104, 120, 140]. Another class of models, so-called
physico-empirical models [3, 45], attempts to construct the water retention curve
through a weighted sum of the conjectured water retention curves of component
particle-size classes.
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3.5.5 Unsaturated Hydraulic Conductivity, K(θ)

Transport through a medium occupied by two immiscible fluids is much more com-
plex than the single-fluid case. Most obviously, the pressure difference that drives
fluid flow also drives changes in pore occupancy, such that saturation may vary dy-
namically along the flowpath, with consequent changes in conductivity. But changes
in saturation require fluid continuity: what happens when one fluid is trapped? More
broadly, when can one of the two fluids be ignored?

In the simplest analysis, the fluid that is not of interest is assumed to be inert, as
if it were part of the solid phase. This effectively changes the porosity and pore size
distribution, recasting the problem as a saturated conductivity problem in a different
medium. Most methods (our included) implicitly take this approach, although it ig-
nores frictional differences between fluid-fluid and fluid-solid interfaces, including
the reciprocal effects of friction due to simultaneous flow of two fluids [113]. How-
ever, making this assumption in deriving a K(θ) relationship does not then require
ignoring the second fluid in a two-phase flow simulation!

The unsaturated conductivity is often given relative to the saturated conductivity,
as reflected in the petroleum engineer’s preferred term, relative permeability. Here
we give a brief description of how one popular K(θ) model, that of Mualem [101],
is derived.

Mualem [101] started by assuming that the pore size distribution W(r) was
known, from the smallest pore r0 to the largest rm, such that

∫ rm

r0

W(r)dr = φ (3.15)

He then assumed that at saturation, hydraulic conductivity cannot be given by a
simple integration over all pore sizes, because large pores are not continuous across
the sample. Instead, he supposed that conductivity was given by a joint probability
distribution of W(r) with itself, thereby allowing for random reconnection. At sat-
uration, then, he expected saturated hydraulic conductivity, KS, to be proportional
to

KS ∝
[∫ rm

r0

rW(r)dr

]2

(3.16)

Because integration is an arithmetic mean, this implies that all pores are conduct-
ing in parallel (Table 3.1). Such an assumption is equivalent to a physical medium
consisting of a bundle of (capillary) tubes. We have recently shown [66] what diffi-
culties arise from using such models as a basis for upscaling any pore-scale process
to medium scale measurements. This topic is considered in detail in Sect. 3.6.

Mualem then assumed that tortuosity and connectivity together have a multiplica-
tive effect, and that their correction has the functional form τ ∝ Sl

e for some expo-
nent l. Various values have been given for l; Mualem’s choice of 0.5 was largely
empirical.

Finally, Mualem assumed that the hydraulic conductivity at any arbitrary degree
of saturation is given by changing the integration limits of Eq. (3.16), and adjusting
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Fig. 3.10 Unsaturated
hydraulic conductivity (K)
curves predicted by Mualem
and van Genuchten (MvG),
and by percolation theory
combined with critical path
analysis. Note that MvG
tends to infinite slope at full
saturation, in contrast to the
percolation-based prediction.
The high slope near
saturation accommodates the
tendency for soil structure
(e.g., cracks and wormholes)
to strongly enhance K right
near saturation

the value of Se used for the tortuosity correction. Translating through the capillary
equation, Mualem’s equation for relative permeability is

K(θ)

KS
= S0.5

e

[∫ θ

0
dθ
h

∫ φ

0
dθ
h

]2

(3.17)

Note that integration from zero implies that pores that are water-filled at θr are con-
tributing to flow, even though their “residual” status implies that they cannot drain.

Van Genuchten’s [137] WRC equation, Eq. (3.14), allows integration, so using it
to replace the integrals in Eq. (3.17) gives (henceforth MvG)

K(θ)

KS
= S0.5

e

[
1 − (

1 − S
1/m
e

)m]2 (3.18)

A graphical comparison of Eq. (3.18) with the results for K from critical path anal-
ysis (Chap. 5) is given in Fig. 3.10. MvG produces a sigmoidal curve, as is typically
observed for the (logarithm of the) hydraulic conductivity as a function of saturation.
The parameters n and m (= 1 − 1/n) are known to have some undefined relation-
ship with the pore size distribution. The relationship between m and n relates the
curvatures at large and small saturations. We show later that these curvatures must
be related, because percolation constraints on the air (water) phase must affect the
limits at large (small) saturations. The air and water critical volume fractions appear
to be equal for coarse soils, but not for soils with high clay content.

A number of problems exist with the Mualem-van Genuchten relationship
(Eq. (3.18)). The argument of the tortuosity/connectivity factor has a dependence on
the moisture content consistent with percolation theory, but the power of 1/2 is far
from the appropriate value of 2 [28, 51]. Meanwhile, the second factor is obtained
through a simple arithmetic averaging procedure, which as noted is only appropriate
with perfect connectivity. Perfect connectivity requires a critical volume fraction of
zero, which (a) should then be reflected in the first (connectivity) factor, and (b) is
inconsistent with an adjustable residual moisture content [64]. These inconsisten-
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cies make the phenomenology capable of matching almost any experimental result,
but at the cost of predictive science.

3.6 Conceptual Models of Porous Media

Porous media have been modeled many different ways: as random or regular sphere
packs, as bundles of parallel capillary tubes, as pore networks, and with fractal con-
cepts. Experiments are conducted not only on natural materials in situ and in the
laboratory, but also on artificial porous media such as glass bead packs and etched
2D micromodels.

The capillary tube bundle model deserves special mention. In its simplest form,
this model represents the medium as a collection of right circular cylinders, all of
the same length, and occurring with a frequency that gives the same volume pdf
as the medium. Pressure-saturation relationships are derived by assuming that all
tubes with radius r < A/h are filled with water (regardless of height!), while larger
tubes are empty: allowability is considered but accessibility is not. The hydraulic
conductivity is then calculated as the arithmetic mean conductivity of the water-
filled tubes. Additional “physics” may be added in the form of misalignment of
tubes to create tortuosity, variable tube radii to generate the inkbottle effect, etc.
Despite its obvious shortcomings this model refuses to die: a recent publication [58]
endorsed by the National Research Council of Canada recommended abandoning
models that are over 100 years old, turning instead to models based on the bundle
of capillary tubes! Because each tube spans the entire medium, the “pores” have
infinite coordination and zero percolation threshold. It therefore serves as a limiting
case of perfect connectivity between pores of any given size, but zero connectivity
between pores of different sizes. But as anything other than a teaching tool and a
limiting case, the capillary bundle is misleading and physically incorrect. Because
this book is a study of how connectivity affects flow and transport in natural media,
we will not further examine these models.

Network models of porous media began with Fatt [42–44], as a reaction against
unrealistic capillary bundles and mathematically impractical sphere packs. Where
Fatt’s networks were tubes meeting at a dimensionless point, a “ball-and-tube” con-
figuration soon became common, reflecting the distinction made earlier between
storage in pore bodies, and flow through pore throats. More recent pore throat mod-
els have a polygonal rather than a circular cross-section section [18, 84, 90], and/or
a converging/diverging geometry (e.g., bi-conically shaped throats; [61, 131] rather
than a constant cross-section. Early networks were almost all 2D, while modern net-
works are almost all 3D. This is a critical distinction: in a two-dimensional medium,
percolation of only one phase is possible. Thus not only is simultaneous flow of air
and water impossible, but if all the grains were in contact with each other (neces-
sary for mechanical stability) no flow at all would be possible! Early networks used
regular lattices, with pore radii assigned at random to the bodies and throats, and
individual throats pruned (eliminated) at random to yield the desired mean coordi-
nation. In contrast, modern treatments often use irregular networks [4], with pore
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radii spatially correlated [80] and pore coordination positively correlated with pore
size [89]. Network models were used as conceptual tools in petroleum engineering
for two decades before their relationship to percolation processes was recognized
[21, 87].

The increasing capability of computers, combined with the increasing sophistica-
tion of network models, has made it possible to perform numerical flow simulations
of rather realistic media, if on a small scale. However, our goal is an analytical
framework for prediction, rather than a strictly numerical understanding. Fractal
models can represent complex natural media with a paucity of relevant parameters,
which is a strong factor in their favor. In fact, fractal models introduced since around
1990 have had some success in modeling both predictions for porosity and the wa-
ter retention curve, though their relevance for flow properties has not so easily been
established. In any case, the basis of the Brooks and Corey (BC) WRC could be
shown to lie in the relevance of a power-law pore-size distribution, consistent with
the assumptions of certain fractal models. Thus we choose to apply fractal models
(Chap. 4) when possible or appropriate.

Suppose we want to model a natural fractal porous medium. Even if the range
of fractal properties is restricted to one order of magnitude, the medium cannot
be mapped to a regular network because the network has a fundamental scale and
associated regularity. The question is, how are natural porous media best modeled?
Does the distinction between pore body and pore throat still hold in real media,
even if they are fractal? A natural porous medium has a random arrangement of
unequal sized and shaped particles, complicating the precise identification of pore
bodies and throats. For some real media it has been suggested that a topological
definition using, e.g., dual graph theory [52] will yield a consistent distinction. The
application of dual graph theory is related to the construction in condensed matter
theory for finding the dual of a lattice, in this case for a random medium. Does
the distinction hold for fractal media? We assumed implicitly that it does, but what
inaccuracies may result from not having a rigorous classification for such a fractal
model?

Other practical questions arise. If one uses fractal models to interpret real media,
is there a tendency for the fractal dimensionalities to cluster around a single value
[147]? Should one use different fractal characteristics in the different ranges of pore
sizes corresponding to sand, silt, and clay particles [13], or even a multi-fractal anal-
ysis [107]? Many early network models of porous media used log-normal pore size
distributions instead of power-law distributions. Which distribution is more common
in nature, and does the existence of a power-law pore-size distribution really imply
the relevance of a fractal model? Does it make sense to use a power-law pore-radius
distribution on a regular grid?

Of course these practical details beg the question: How should one formulate
flow and transport theories in such problems? If one starts with a percolation theo-
retical basis, which form of percolation theory should one choose? Since treatment
of fractal media using regular network models would be ill-advised, we chose con-
tinuum over site or bond percolation theory, a choice with significant consequences.
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As regards the question of whether to use fractal models or more complicated treat-
ments, we have consistently followed an approach of allowing the available data to
guide us.

3.7 Conclusion

A person first encountering porous media may be quickly overwhelmed by the va-
riety of materials, the disparate disciplines interested in these materials (and their
disparate terminology and assumptions), and the range of porosities, pore sizes, and
pore structures. We attempted to avoid this pitfall by restricting ourselves to soil and
rocks, while yet examining properties common to all porous media.

We highlight here some recurring themes of this primer, which will recur in later
chapters:

• Porous media are largely studied for specific practical reasons, and even now the
literature is largely fragmented, empirical, and applied.

• The range of sizes encountered in a given porous material may span several orders
of magnitude, such that there is no apparent characteristic length scale.

• We can’t define pores unambiguously, and yet we can measure them in the aggre-
gate well enough to make predictions that work, at least sometimes.

• Geometrical properties have been emphasized almost to the exclusion of topolog-
ical properties.

• Topological disorder of the fluids in the porespace is at the root of many problems
in upscaling from the pore scale to the macroscale.

• Fluid flow is a strong function of fluid occupancy.
• There are important asymmetries between the wetting and non-wetting fluids.

More importantly, however, one might ask how the confusion regarding the con-
stitution of porous media and how water is apportioned within them could have
contributed to the almost universal failure to recognize the exceptional utility of
σ ≈ (p − pc)

2 in predicting transport properties, as will be seen in Chaps. 6 and 7.
We think that this failure has several bases:

(1) Recognition of the overwhelming complexity of porous media together with
advances in imaging and numerical modeling have prompted people to follow
their natural impulse to classify and define media, and then proceed to develop-
ing algorithmic, piecemeal solutions,

(2) Seizing on the relatively simple example of the Brooks-Corey power-law WRC,
people have tended to attribute too much importance to the flexibility of fractal
models and too little to the topological connections of the fluids within real
media. An emphasis on power-law formulations based on medium morphology
has been the result,

(3) The failure to recognize that the conditions for the applicability of non-universal
power-laws from continuum percolation are quite restrictive, allowing the im-
pression to develop that there is, somewhere, a theoretical basis for choosing an
arbitrary power-law phenomenology for an arbitrary property,
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(4) A general lack of familiarity with percolation concepts and a commensurate
reliance on models and techniques that do not address connectivity,

(5) An almost total ignorance of the reasoning behind critical path analysis,
(6) A hesitation to address the theoretical and practical difficulties inherent in the

determination of the critical volume fraction for percolation.

We think that the successes of Chaps. 5–13 should help people overcome various
barriers to embracing percolation methodology. It is interesting that the community
has recognized the common occurrence of power-law behavior while attributing its
cause to fractal morphology. In fact, we show by overwhelming evidence that the
ubiquity of power laws is not an evidence for a specific model of a medium, but
an expression of the underlying influence of percolation processes. Nevertheless,
we agree that fractal medium models can describe a wide range of medium charac-
teristics, distilling a great deal of complexity into a few parameters. Thus we will
apply percolation concepts to fractal models, which we discuss in detail in the next
chapter. The analyses we develop subsequently are often adequate to distinguish the
relative importance of medium and fluid characteristics.

Problems

3.1 Remember that pumice (specific gravity of the solid portion typically ca. 2.65)
may float on water. Does this mean that the holes in pumice cannot be con-
nected? Use the Scher and Zallen results (Chap. 1) to set an upper limit on
the porosity of a regular pumice, for which all the “holes” are the same size.
Assume that the holes are spherical. What lattice would you choose for this
calculation?

3.2 Assuming a solid material density of 2.65, calculate the minimum porosity re-
quired for the condition that pumice float. Is the Scher and Zallen result useful
as a predictor? In a fractal model the porosity of a medium may approach 1. Do
you expect that the holes in pumice (due to gas bubbles) are of uniform size, or
highly variable?

3.3 If the holes in pumice are due to gas bubbles, did the gas escape? How? Can
the relevant porosities for these questions be the porosity not accessible to an
infinite cluster instead of the bulk porosity?

3.4 Suppose that the pumice was formed in a violent explosion that resulted when
the gas bubbles “percolated.” What sort of size distribution of pieces of pumice
would you expect to find?
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Chapter 4
Fractal Models of Porous Media

In the previous chapter we introduced some basic concepts of porous media, and
raised the question of how best to model fluid movement in a porous medium. We
suggested that fractal concepts might be well suited to such modeling, because of
their simple descriptions of highly ramified spaces. In this chapter we examine some
fractal models of porous media. After introducing some fractal concepts, we derive
one specific random fractal model of the pore size distribution (that of Rieu and
Sposito [53]), and show its application to the water retention curve (WRC). We
then survey several published fractal WRC models, and develop a general form that
includes some existing models as special cases. Finally, we reiterate that there is no
simple mapping possible between any measure of the pore space and the soil WRC.

4.1 Fractal Approaches to Porous Media Modeling

Fractal theory provides a promising framework for addressing the complexity of
disordered, heterogeneous, hierarchical porous media, such as soils and fracture
networks. But natural physical objects can at best only be approximated by frac-
tal models, which span an infinite size range and are (often) strictly deterministic.
Turcotte [58] elucidated a mechanism by which scale-independent fragmentation
processes could form a fractal distribution of particles, giving theoretical legitimacy
to the study of fractal models of porous media.

A fractal object is characterized by having a (typically non-integer) dimension
less than the Euclidean dimension it is embedded in. It also has the property of
self-similarity or self-affinity. If a synthetic fractal object is rescaled in all direc-
tions with the same scaling factor, an exactly similar object is reproduced (Fig. 4.1).
Self-affinity means that a fractal object has different scaling factors in different di-
rections [55]. Of course, most natural objects that are self-similar or self-affine have
that property only in a statistical sense. The concepts of self-similarity and self-
affinity have widely been used to model physical and geometrical properties of soils
and fracture networks [9, 28, 40, 41, 45, 53, 58]. It has been shown that fracture
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Fig. 4.1 Exactly self-similar Sierpinski carpets after two iterations with fractal dimension
D = 1.893 and b = 3: (a) a solid fractal model constructed of particles of the same size but pores
of different sizes, (b) a pore fractal model built up of particles of different sizes but pores of the
same size (after Ghanbarian et al. [21]). The solid matrix is shown in black, while pores are white

surfaces are statistically self-affine [64]. Poon et al. [52] modeled surface roughness
of fractures by means of self-affinity; see Sahimi [55] for a comprehensive review
of related work.

A feature of power-law functions that distinguishes them from all other functions
is that they are linear when plotted on a log-log scale. The power-law function for
describing a fractal number-size distribution is [37]

N(≥ l) = kl−D, lmin < l < lmax (4.1)

where N (≥ l) is the number of fractal objects whose size is equal or greater than l,
k is a constant coefficient, and the fractal dimension D typically ranges between
0 and 3 in natural porous materials. Note that Eq. (4.1) is a truncated power-law
function: it only applies within the specified range, lmin to lmax.

Tyler and Wheatcraft [59] used Eq. (4.1) to estimate the fractal dimensionality
of particle-size distributions. To be consistent with Arya and Paris [2], they applied
the arithmetic mean particle radius derived from sieve data. Given that counting
all particles between two sieve sizes was impractical if not impossible, Tyler and
Wheatcraft [59] inferred the number-size distribution from the mass-size distribu-
tion. For this purpose, they divided the mass of particles retained on the lower sieve
by the mass of a particle with radius equal to the mean of the two sieve sizes. They
found that D > 3 for 9 of the 10 experiments they analyzed, a physically dubious
result because we expect D (even for a number distribution) to be less than E, the
Euclidean dimension in which it is embedded.

The fractal dimension over-estimation by Tyler and Wheatcraft [59] and later
researchers is likely due to incorrect assumptions used in deducing number-size
distributions from mass-size distributions. The first assumption is that particle den-
sity is scale-invariant. This assumption would be especially unrealistic if aggregate
number-size distribution were derived from aggregate mass-size data. However,
analysis of experimental aggregate data by Perfect et al. [48] showed that the as-
sumptions of scale-invariant density and shape were valid for most samples. A sec-
ond simplifying assumption is ignoring the shape of the aggregates or particles: for
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the sake of simplicity, particles are assumed to be spherical, and aggregates cubic.
A third assumption is that there are no artifacts in applying the continuous equa-
tion (4.1) to discrete data (aggregate and particle sizes). This may produce errors
in determining the fractal dimension, because (for example) the N (≥ l) value in
Eq. (4.1) depends on the choice of sieve size [1], and the arithmetic mean is not the
appropriate mean.

The probability density function of fractals—the number of objects whose size is
within the range l to l+dl (dN(≥ l) ∝ l−1−D)—is proportional to the first derivative
of Eq. (4.1). Generally one writes

f (l) = Cl−1−D, lmin < l < lmax (4.2)

where f (l) is the probability density function, and C is a constant coefficient which
can be found by taking the integral of Eq. (4.2) from lmin to lmax and setting it equal
to 1: C = D/(l−D

min − l−D
max) [24]. Where lmin 
 lmax, as occurs in many natural porous

media, the constant coefficient C ≈ DlDmin.
While much experimental evidence indicates that the size distribution of parti-

cles, aggregates, and pores follows power-law behavior, sometimes the lognormal
distribution is assumed instead (see e.g., [34, 36, 56]):

f (l) = 1√
2πσ l

exp

[

− (ln(l) − μ)2

2σ 2

]

, 0 < l < ∞ (4.3)

where μ is the mean, σ is the standard deviation, and l is the size of the object
e.g., pore, particle, or aggregate. In contrast to the power-law distribution, the log-
normal distribution has finite mean and variance. With appropriate parameters, the
lognormal distribution is similar in shape to the power-law distribution over much
of its range. In particular, where variance of the lognormal distribution is large, its
cumulative density function may appear linear on a log-log plot for several orders
of magnitude [39].

Among the many synthetic fractal objects, the 2D Sierpinski carpet (Fig. 4.1)
and its 3D equivalent, the Menger sponge, have been widely used to model porous
materials. The Sierpinski carpet is constructed by starting with a square of size L

(the “initiator length”). For the first iteration, the operational length scale l is L/b

in which the scaling factor b = 3 for the traditional Sierpinski carpet (Fig. 4.1). In
the exactly self-similar Sierpinski carpet, the central square of size l is removed,
thereby creating a square pore of size l. For the next iteration, l is divided by b, and
all intact squares of size bl have their central l-size squares removed [23].

Primary fractal models include just two phases, pore and solid, and may be either
solid fractal (Fig. 4.1a) or pore fractal (Fig. 4.1b) models [54]. The main character-
istic of a solid fractal model is that, within each iteration of its construction, the
model is composed of identical-size particles but pores of different sizes (Fig. 4.1a).
In such a model, just the solid matrix is fractal whose number-size distribution (and
consequently probability density function) follows a power-law function. Although
the pore phase in the solid fractal model (Fig. 4.1a) is not geometrically fractal, its
number-size distribution is given by a power-law function (Eq. (4.1)) and it has the
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Fig. 4.2 Randomly
(statistically) self-similar
Sierpinski carpets after two
iterations with the same
fractal dimension D = 1.893
and scale factor b = 3 used in
Fig. 4.1: (a) a solid fractal
model, (b) a pore fractal
model. Black and white
squares respectively represent
solid particles and pores

same fractal dimensionality as the solid phase [54]. So in fact, one fractal dimen-
sion scales both solid and pore phases, albeit in different ways. The same argument
applies to the pore fractal model (Fig. 4.1b).

The Sierpinski carpets presented in Fig. 4.1 are exactly self-similar. Natural
porous media are instead randomly self-similar, but it seems that the same power-
law number-size distribution applies. In Fig. 4.2, we show randomly (statistically)
self-similar Sierpinski carpets after two iterations for solid (Fig. 4.2a) and pore
(Fig. 4.2b) fractal models. Though the fractal dimensionality is identically 1.893
for carpets in both Figs. 4.1 and 4.2, the random carpets shown in Fig. 4.2 are more
heterogeneous and complex than the deterministic carpets presented in Fig. 4.1, and
appear more similar to real natural porous media.

4.2 The Rieu and Sposito (RS) Fractal Model

Rieu and Sposito [53] (henceforth RS) developed a model of a fractal pore space
linked to a fractal particle model. Several studies have subsequently shown that wa-
ter retention curves (WRCs, also called pressure-saturation curves) can be predicted
from particle-size data using the RS model [5, 19, 28]. In the RS notation, d0 de-
notes the largest pore size, and dm the smallest. The reason for this choice is that
they use an index i, representing the iteration of the fractal process, which runs from
0 to m. We use their convention for deriving their model, but we use the reverse con-
vention throughout the rest of this book, as it is more intuitive to consider r0 to be a
minimum radius and rm a maximum.

For simplicity, consider that pores exist only at discretized diameters, di . Vi rep-
resents the total volume in all pore sizes greater than dm and less than or equal to di .
There is a constant ratio N of the number of pores of diameter di+1 = qdi to the
number of pores of diameter di . The constant q , the ratio of pore diameters in suc-
cessive classes, is less than 1. Define the partial volume Pi ≡ Vi − Vi+1, and denote
the total volume as V0 and the volume of the solid material as Vm. Then one can
write

V0 =
m∑

i=0

Pi + Vm (4.4)
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Self-similarity requires

Vi = NVi+1 + Pi (4.5)

This result allows Eq. (4.4) to be rewritten as

V0 =
m−1∑

i=0

NiPi + NmVm = P0

m−1∑

i=0

(
Nq3)i + (

Nq3)m
V0 (4.6)

Here, as in the original treatment of Rieu and Sposito, the solid volume is now
reinterpreted as NmVm. One way to think of this is that pores smaller than dm can
be ignored; that is, if we could resolve smaller pores, the iteration would proceed
further.

The total pore volume, Vp, can be written as

Vp = P0
[
1 + Nq3 + (

Nq3)2 + · · · + (
Nq3)m−1] = P0

1 − (Nq3)m

1 − Nq3
(4.7)

Now we can express the porosity as

φ =
P0

1−(Nq3)m

1−Nq3

P0
1−(Nq3)m

1−Nq3 + NmVm

(4.8)

Solving Eq. (4.6) for P0 in terms of V0, we find

P0 = V0
(
1 − Nq3) (4.9)

Using the same substitution in Eq. (4.8) for NmVm as in Eq. (4.6), and substituting
Eq. (4.9) for P0, we find

φ = 1 − (
Nq3)m

(4.10)

Now consider the definition of the fractal dimensionality [37, Chap. 13]; [32,
Chap. 3]:

D = log(N)/ log(1/q) (4.11)

Combine this definition with Eq. (4.10) to obtain

D = 3 − log(1 − φ)

log(qm)
(4.12)

The numerical factor qm, however, is nothing more than the ratio of the smallest
pore diameter to the largest, dm/d0, so that

D = 3 − log(1 − φ)

log( dm
d0

)
(4.13)

and now Eq. (4.13) may be rewritten as

φ = 1 −
(

dm

d0

)3−D

(4.14)
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Equation (4.14) establishes the RS result for the porosity. This result is very simple,
being independent of shape parameters and the choices of N and q . Equation (4.14)
can also be used to show that

(
Nq3)m = (

qm)3−D (4.15)

which simplifies to N = q−D . What sort of a distribution of pore sizes does the
above analysis lead to? For the partial volume P(i) of pores of size class i, we can
write

P(i) ∝ Ni = q−iD =
(

di

d0

)−D

(4.16)

where this last expression uses the relationship between the pore radius ri and the
fractal iteration i: ri = qir0. Equation (4.16) for P(i) could be written as P(i)�i

without change, since i is an integral index and �i = 1. Then the probability den-
sity function W(d) for a pore of diameter d is found by using the transformation
W(i)di = W(d)dd ,

W(r) ∝ ( d
d0

)−D

d ln(q)
∝ d−D−1 (4.17)

We now drop the RS convention, interchanging the meaning of the subscripts 0
and m. We develop a normalized form for a pdf for pore radii, W(r), which gener-
ates the same result for the porosity as Eq. (4.14):

W(r) = 3 − Dp

r
3−Dp
m

r−1−Dp r0 ≤ r ≤ rm (4.18)

Here we have substituted Dp for D to specify that the fractal dimensionality con-
cerned applies to the pore space. The result for the total porosity derived from
Eq. (4.18) is [28]

φ = 3 − Dp

r
3−Dp
m

∫ rm

r0

r3r−1−Dpdr = 1 −
(

r0

rm

)3−Dp

(4.19)

exactly as in RS. Equation (4.19) is compatible with a volume r3 for a pore of
radius r . That is, if a particular geometry for the pore shape is envisioned, it is
possible to change the normalization factor to maintain the result for the porosity,
and also maintain the correspondence to RS. This is an important restriction, and is
applied because φ in the RS treatment is independent of geometry.

Integration of W(r)r3 over the continuous pore size distribution between pr

and r , where p < 1 is an arbitrary factor, yields the contribution to the porosity
from each size class obtained by RS. Integration of W(r) over the same size range
yields the probability that an arbitrary pore has a radius of r that is in agreement
with the direct calculation of RS. Thus the present model (Eq. (4.19)) is a continu-
ous (and thereby more general) version of the discrete RS model (Eq. (4.14)). The
power law distribution of pore sizes is bounded by a maximum radius rm, and a
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Fig. 4.3 The cumulative particle-size distribution data from the Injection Test Site 2-2230 soil at
the US Department of Energy’s Hanford Site. Data from Freeman [20]. The horizontal scale is
in logarithm base 10. The maximum particle radius is very nearly two orders of magnitude larger
than the minimum value (Log[2.5] − Log[0.5])

Fig. 4.4 The cumulative particle-size distribution from the B8814-135 soil at the US Department
of Energy’s Hanford Site

minimum radius r0. Note that knowledge of φ, r0, and rm is sufficient to give D

explicitly. φ is typically obtained through density measurements, and r0 and rm are
obtained from particle size measurements. Examples of the determination of r0 and
rm are given in Figs. 4.3, 4.4 and 4.5.

Although the symmetry in shape imposed by the choice of square or cubic vol-
umes for iteration forces equality in the fractal dimensionalities of the pore and solid
spaces for idealized fractal models, this equality does not survive the application of
a model to a real medium. Using the symmetry in the purely mathematical substitu-
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Fig. 4.5 The cumulative particle-size data from the ERDF 4-1011 soil at the US Department of
Energy’s Hanford Site

tions φ → 1 − φ and Dp → Ds (where Ds refers to the fractal dimensionality of the
solid portion of the medium), we obtain the result [28]

φ =
(

r0

rm

)3−Ds

(4.20)

As a reminder, in Eq. (4.19), r0 and rm refer explicitly to the minimum and max-
imum pore sizes, and in Eq. (4.20) to the minimum and maximum particle sizes.
We have made the common assumption [2, 25, 61] that pore and particle radii are
proportional to each other. Under this assumption, the ratio r0/rm is the same for
both particles and pores, though this assumption is not always justified.

We now have Dp = Ds only for the special case that φ = 0.5. For example, Katz
and Thompson [33] used optical measurements to detect the range of sizes in the
particle space corresponding to the range from r0 to rm. They assumed a lower cut-
off of r0 ≈ 2 nm, and determined values of rm of up to 100 µm. Then they used
Eq. (4.20) (as did Nigmatullin et al. [43]) to relate the porosity, the ratio rm/r0,
and the fractal dimension, but used the dimensionality of the pore volume, Dp,
rather than that of the solid volume, Ds, because their model is pore-fractal based
(Fig. 4.1b). Their statement, “successful prediction of the porosities from the fractal
parameters verifies the assumption that the pore surface and volume are fractals with
the same dimension” does not necessarily follow, because Eq. (4.19) and Eq. (4.20)
are complementary [27]. Given Eq. (4.19), which relates the fractal dimensionality
of the pore space to the porosity, and their assumed values rm/r0 ≈ 104, their frac-
tal dimensionality range from 2.57 to 2.87 would imply porosities between 95 % to
73 %, rather than the values between 5 % to 27 % that they calculated and measured.
What this means is that the range of pore-particle interface structures that they mea-
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sured, including the fixed lower bound, would not correspond to the range of pore
sizes in a pressure-saturation curve. This distinction is made clear in the derivation
of the RS model, and supported by its predictions. We have provided two deriva-
tions of their result for the porosity above. Further, in addition to our tests on ca.
40 Hanford site soils, which demonstrated that the RS model can be used to predict
water retention curves (next section), at least one other group of researchers [19]
have also demonstrated that the RS model is predictive in this way.

Where does the typical asymmetry between particles and pores come from?
A reasonable hypothesis is that it chiefly arises from the tendency for particles to
be positively curved and for the pores to be negatively curved (note the exception
of solidified foams such as pumice, for which values of φ are probably the largest
of all geological porous media). Such a contrast in curvature would tend to produce
φ < 0.5. According to Eq. (4.19) and Eq. (4.20), φ < 0.5 is consistent with pore
space having a greater fractal dimensionality than that of the particles, a tendency
noted also by Rieu and Sposito [53]. In soils, mechanical strength tends to limit
porosity to less than 0.5, and the mean porosity of rocks is generally less than that
of soils. This discussion is not meant to justify a rule, but only to explain a tendency.

4.3 Water Retention Using the RS Model

As discussed in Sect. 3.5, the water retention curve (as it is known in soil physics
and hydrology) or pressure-saturation curve (as it is known in petroleum, chemi-
cal, and civil engineering) is assumed to represent the pore-size distribution. Typ-
ically either water (a strongly wetting liquid with a contact angle near zero) is
drained from the medium, or mercury (a non-wetting liquid with a fairly consis-
tent contact angle on mineral surfaces) is injected into the medium, at controlled
pressures. The water retention curve (WRC) relates the incremental pressures to
fractions of the pore volume. But because of complex phenomena that are not usu-
ally considered—accessibility, hysteresis, wettability, and trapping—the pore-size
distribution inferred from a capillary pressure curve may deviate significantly from
the true pore size distribution. The RS model for the WRC ignores these complica-
tions, assuming perfect wetting (contact angle of 0°) and perfect accessibility.

Assume spherical pores, equilibrium conditions, and a pore radius pdf equal to
W(r). Then the total water content in the medium may be written

θ =
∫ A/h

r0

W(r)

(
4

3
πr3

)

dr (4.21)

where the numerical coefficient A is known for e.g. cylindrical pores, but unknown
in a natural medium where the wettability and shapes of pores are typically un-
known. In media with non-ideal pores, as long as pore lengths and radii are cor-
related, the factor r3 in the integrand is still appropriate. One then finds dθ/dh ∝
W(r)r3h−2 ∝ W(h)(dh/dr)h−5 ∝ W(h)h−3, so that to find W(h) (within numer-
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ical factors), one simply takes the product of h3 and the derivative of the water
content with respect to h at the given h.

W(h) determined in this way typically contains a region at intermediate satura-
tions which is consistent with power-law behavior and fractal models, but it deviates
at the wet and dry ends of the moisture spectrum. These deviations give a sigmoid
shape to W(h) (and to W(r)), with regions of pronounced curvature at both the wet
and dry ends. Such deviations from power-law behavior have led some to conclude
that (1) the appropriate distribution of pore volumes is not fractal but, e.g., log-
normal, and/or (2) water content changes at the wet end result from the wetting or
drying of larger “structural” pores, and at the dry end from water held in thin films,
capillary bridges, and surface roughness. Of course, some deviation from the predic-
tions of fractal models must occur at each end, because continuity of the constituent
phases is interrupted. That is, such discrepancies are not by themselves sufficient
to accept or reject a fractal model. Further, to the extent that such deviations arise
from fluid properties and percolation, they may be time-dependent (as discussed in
Chap. 8). Incorporation of both time-dependent and time-independent phenomena
into a single time-independent phenomenology is by definition inconsistent.

For an RS fractal medium in equilibrium, we proceed from Eq. (4.19) to calculate
the fractional water volume at arbitrary pressure h < 0 simply by changing the limits
of integration:

θ(h) = 3 − D

r3−D
m

∫ A/h

r0

r2−Ddr (4.22)

where A/h in the range r0 ≤ A/h ≤ rm determines the largest pore that contains
water. For values of h outside this range (A/h larger than rm or smaller than r0),
θ = φ or θ = 0. At a particular value of h denoted hA (called the air entry pressure;
see Sect. 3.5.4), air could just enter the largest pore if that pore were located at the
edge of the sample. Thus, A/hA = rm, so hA can be related to the porosity:

φ = 3 − D

r3−D
m

∫ A/hA

r0

r2−Ddr (4.23)

Note that for any given soil, there must be some maximum pore size. For h < hA

corresponding to that largest pore, the soil is saturated (as we are still ignoring ac-
cessibility issues). Note that there is a saturated region above the water table (i.e.,
h > 0) known as the capillary fringe; the height of this region approaches zero in
the limit that the largest pore size approaches infinity.

Combining Eq. (4.22) and Eq. (4.23) produces the WRC in terms of relative
saturation,

S ≡ θ

φ
= 1 − 1

φ

[

1 −
(

hA

h

)3−D]

(4.24)

a relationship also obtained by Rieu and Sposito [53] using their discrete ver-
sion of this model. Equation (4.24) may be (very roughly) approximated as S =
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Fig. 4.6 The water retention data for the Injection Test Site 2-2230 soil at the US Department of
Energy’s Hanford Site. The prediction of the fractal scaling in the open squares is taken from the
value of Dp determined from the particle-size data in Fig. 4.3; one parameter, hA, which fixes the
vertical scale, was chosen to optimize the fit. The arrow denotes the dry-end moisture content at
which experiment begins to deviate from the fractal model

(hA/h)3−D, which is precisely the form of the phenomenological relationship pro-
posed by Brooks and Corey [7]. We note in passing that the water content of natural
porous media most closely resembles the result of Eq. (4.24) during drainage; the
wetting curve has additional complications.

In Figs. 4.6, 4.7 and 4.8 the results of Eq. (4.24) are compared with water reten-
tion data from the same media as for Figs. 4.3–4.5. The value of the fractal dimen-
sionality was found from analysis of the particle size data according to Figs. 4.3–4.5,
and knowledge of the porosity (Eq. (4.19)). Note that the predicted water retention
curve agrees with observation in the middle of the range of saturations, where both
the water and the air phase percolate simultaneously, but does not predict the curva-
ture at the wet and dry ends, where complications would be expected due to (among
other causes) percolation effects not being included in the RS model. In Chap. 8 we
show how, in a large number of tested cases, we can predict the dry end deviations
from the RS model using the hydraulic conductivity calculated from the RS model,
and the wet end deviations using topological constraints from percolation.

We have found that the RS model is accurate and appropriate for a large number
of natural porous media, though certainly we do not assume that it applies to all
media. Below we show that for some media, the equilibrium water content predicted
by the RS model deviates from experiment at both the wet and dry ends of the
spectrum. These observations raise the question: do the observed deviations from
prediction stem from defects in the fractal model, or are they due to complications
that may be explained by percolation theory? If the latter, the deviations must be
recognized as model strengths rather than defects.
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Fig. 4.7 The water retention data for the B8814-135 soil at the US Department of Energy’s Han-
ford Site. The prediction was made analogously to Fig. 4.6

Fig. 4.8 The water retention data for the ERDF 4-1011 soil at the US Department of Energy’s
Hanford Site. The prediction was again made analogously to Fig. 4.6

We caution that the complicating behavior at the wet and dry ends of the wa-
ter retention curve need not be due only to percolation behavior. Some pore size
distributions may indeed be log-normal. At the wet end, structural pores often do

complicate the analysis. At the dry end, water present in surface films may com-
plicate matters. It is important to keep these uncertainties in mind during analysis,
although other than percolation effects, only those effects due to structural pores
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will be considered here, and those only in Chap. 12. Before useful conclusions can
be drawn from any discrepancies in predictions from the fractal model, however,
effects due to percolation must be excluded. Otherwise inferences will be nonsense.

4.4 Other Fractal Models of the WRC

The RS model for the WRC deviates from observations, and it does not describe the
whole range of observed water retention curves (WRCs). As we show in Chap. 8,
many of the discrepancies are due to issues that are ignored in typical derivations
of the WRC, such as finite-size effects and fluid continuity effects at the wet end,
and fluid continuity and lack of equilibration at the dry end. But beyond these con-
founding influences, it is also the case that water can be distributed quite differently
at large tension values: appreciable water may reside in capillary bridges, crevices,
and surface roughness. Thus the strong wetting assumption (i.e., that all water is
pore-filling water) is partially at fault.

Partly in response to the known defects of the strong wetting treatment in the
RS model—and without accounting for percolation effects—other WRC models
have been developed. At this nascent stage of development and testing of theoreti-
cal methods, we have not evaluated under what conditions the deficiencies of the RS
model reflect fundamental inadequacies, as opposed to deficiencies due to the strong
wetting assumption. Here we consider a wider range of WRC models, hoping to bet-
ter evaluate where the main limitations of the RS model are found: in its restrictive
generating assumptions, in the strong wetting assumption, or perhaps elsewhere.

4.4.1 de Gennes [13]

Pierre-Gilles de Gennes [13], the Nobel Prize winner in physics in 1991, may have
been the first to propose a fractal soil water retention model. Using geometrical
characteristics of pores for two iterative pits and flocs models, de Gennes [13] in-
dicated that the total volume of pits of size r and less filled with liquid (water) in
the iterative pits model is approximately equal to the total volume due to pendular
droplets in the iterative flocs model and is

V (≤ r) ∝ rD
maxr

E−D (4.25)

where D is the surface fractal dimensionality quantifying pore-solid interface rough-
ness (de Gennes [13]), rmax is the largest pore radius in the medium, r is the largest
pore radius filled with water, and E is Euclidean dimension equal to 2 and 3 in 2D
(e.g., Sierpinski carpet) and 3D (e.g., Menger sponge) systems, respectively.

In the same spirit as Eq. (4.25), the total volume of pores in the medium would
be

V (≤ rmax) ∝ rE
max (4.26)
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Note that de Gennes [13] ignored any water trapped on the rough surfaces of pores
with pore radius larger than r .

Dividing Eq. (4.25) by (4.26) gives

θ

φ
=

(
r

rmax

)E−D

(4.27)

Combining Eq. (4.27) with the capillary equation (h = A/r , where h is tension
head, A is a constant coefficient, and r is the largest pore radius filled with water)
and assuming a contact angle of zero yields

θ

φ
=

(
h

hmin

)D−E

(4.28)

where hmin can be interpreted as the air entry value. Equation (4.28) is a fractal
expression for the water retention curve (also known as capillary pressure curve).
Note that Eq. (4.28) has the same form as empirical models proposed by Brooks
and Corey [7] (with zero residual water content) and Campbell [8]. However, the
exponent (D − E) in Eq. (4.28) has physical meaning.

4.4.2 Tyler and Wheatcraft [60]

Tyler and Wheatcraft [60] proposed a power-law equation having the same form as
the de Gennes [13] model (Eq. (4.28)). Despite the formal similarity, the two models
have different interpretations. Tyler and Wheatcraft [60] used the solid fractal model
and Sierpinski carpet to model hierarchical properties of pore and solid phases. They
found porosity at each iteration (φi ) as

φi = ni

(bi)E
= 1 − (

bi
)D−E (4.29)

where ni is the number of squares (or cubes) which are removed at that iteration step
of the Sierpinski carpet (or Menger sponge), i is the number of iterations, and b is
the scaling factor (b = 3 in the traditional Sierpinski carpet). Tyler and Wheatcraft
[60] call D the fractal dimension of the (Sierpinski) carpet.

Tyler and Wheatcraft assumed that the Sierpinski model would be iterated infinite
times. This assumption is physically unrealistic for natural porous media, which
may be fractal only within a limited range of pore size (e.g., rmin to rmax). Infinite
iterations cause porosity of the carpet to go to 1 (φ = 1). They then defined water
content retained at the ith iteration step (θi ) of the Sierpinski carpet, and replaced
bi by hi (h ∝ bi ) to derive

θi = φ − φi = 1 − [
1 − (

bi
)D−E] ∝ hD−E

i (4.30)

A special case of Eq. (4.30) is where tension head is equal to the air entry value
(h = hmin). In such a case the medium is still saturated and φ ∝ hD−E

min , which results
in the Tyler and Wheatcraft [60] soil water retention model

θ

φ
=

(
h

hmin

)D−E

(4.31)
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Here we replaced θi and hi by the more general symbols θ and h. The RS model
reduces to Eq. (4.31) when φ = 1.

4.4.3 Perrier et al. [51]

Perrier et al. [51] started with the differential pore-size distribution,

−d[Vv > r]
dr

= K(E − D)rE−D−1 (4.32)

where [Vv > r] is the volume of pores whose radius is r or greater, K is a positive
constant, and D is the pore-solid interface fractal dimension. Integrating Eq. (4.32)
and imposing an upper limit value for porosity, Perrier et al. [51] proposed

θ = φ − Vmax

Vt

[

1 −
(

h

hmin

)D−E]

(4.33)

in which

Vmax = KrE−D
max (4.34)

where Vmax is the upper bound of total pore volume, and Vt is the total volume
of a soil sample. As Perrier et al. [51] stated, Eq. (4.33) is a general fractal water
retention curve which reduces to the Tyler and Wheatcraft [60] model when Vmax/Vt
is set equal to φ, and to the RS model when Vmax/Vt is set equal to 1.

4.4.4 Perfect [46]

Based on the characteristics of Menger sponge, Perfect [46] defined the water con-
tent at the ith step as

θi = (
bi

)D−3 − (
bj

)D−3 (4.35)

where b is the scaling factor (for example b = 3 in Figs. 4.1 and 4.2), i is the number
of iterations, and j is the maximum number of iterations (with 0 ≤ i ≤ j ). Perfect
[46] called D the mass fractal dimension scaling both pores and solids. The porosity
can be defined by setting i = 0:

φ = 1 − (
bj

)D−3
(4.36)

By dividing Eq. (4.35) by Eq. (4.36), Perfect [46] found

θi

φ
= (bi)D−3 − (bj )D−3

1 − (bj )D−3
(4.37)

Following Tyler and Wheatcraft [60], one can relate the scaling factor b to minimum
and maximum tension heads:

bi = hi/hmin

bj = hmax/hmin
(4.38)
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Fig. 4.9 Two-dimensional random pore-solid-fractal (PSF) model (generator on the left, and first
iteration on the right) proposed by Perrier et al. [50]. Here P = 0.375 (pore phase portion),
S = 0.375 (solid phase portion), and F = 0.25 (fractal phase portion), and the scaling factor b = 4

where hmin and hmax are tensions required to drain the largest and smallest pores,
respectively.

Combining Eqs. (4.37) and (4.38) and using more general symbols θ and h result
in

θ

φ
= hD−3 − hD−3

max

hD−3
min − hD−3

max
(4.39)

Bird [4] also found Eq. (4.39) using the characteristics of the fragmentation model
of Rieu and Sposito [53]. However, in his treatment the residual water content θr
was included (Eq. (3) in Bird [4]).

As Perfect [46] pointed out, when fitting Eq. (4.39) to water retention data mea-
sured from saturation to high tension head (e.g., 3.3 × 105 kPa), in other words the
entire accessible range, the fitted fractal dimensions were significantly less than 3.
If, on the other hand, Eq. (4.39) was fitted to truncated data (e.g., from saturation
to a tension of −1.5 MPa; a more typical measured range of WRC), D > 3 was
observed. Perfect [46] explained that this systematic error in the fractal dimension
estimation might be due to a transition from fractal to nonfractal scaling. In order
to estimate the fractal dimension value accurately and reasonably (D < 3), Perfect
[46] suggested measuring the entire range of water retention curve from saturation
to zero water content.

If one subtracts Eq. (4.35) from (4.36) utilizing the results from Eq. (4.38), the
RS model equation is obtained. Therefore, the RS and Perfect [46] models are the-
oretically the same, as also reported by Perfect et al. [49] and Ghanbarian-Alavijeh
and Hunt [22].

4.4.5 Bird et al. [5]

All models described so far only include pore and solid phases to model the structure
and geometrical properties of porous media. In 1999, Perrier et al. proposed a three-
phase model (shown in Fig. 4.9) including pores, solids, and fractals. A remarkable
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difference between two-phase (Figs. 4.1 and 4.2) and three-phase PSF (Fig. 4.9)
models is that in these so-called pore-solid-fractal (PSF) models, the mass of pore
phase and solid phase remains finite even if the model is iterated infinitely many
times. Although only the pore-solid interface is geometrically fractal in the PSF
approach, the number-size distributions of pore, solid and fractal phases follow the
same power-law equation with the same fractal dimensionality.

The porosity of the medium simulated by the PSF model at the ith step would be

φi = P

P + S
(1 − F)i (4.40)

where P (0 < P < 1) and S (0 < S < 1) respectively denote the pore and solid
phase portions, and F (0 < F < 1) represents those spatial regions of the generator
within which the entire shape is replicated at any given iteration.

For an infinite number of iterations (i → ∞), the porosity reduces to

φi→∞ = P

P + S
(4.41)

In contrast to two-phase fractal models e.g., pore fractal and solid fractal models
in which porosity reduces to 0 and 1, respectively, after infinite iteration, the PSF
model porosity diminishes to the constant (P/[P + S]).

Based on the properties of the PSF approach, Bird et al. [5] presented a new,
generalized soil water retention curve which includes the Tyler and Wheatcraft [60]
and Rieu and Sposito [53] models as special cases. The Bird et al. [5] model is

θ = φ − α

[

1 −
(

h

hmin

)D−E]

(4.42)

where α = P/[P + S], and the pore-solid interface fractal dimension D also scales
the pore and solid number-size distributions. The PSF soil water retention curve
model (Eq.( 4.42)) is similar to the Perrier et al. [51] model, but their physical inter-
pretations are different because Bird et al. [5] is based on a three-phase rather than
a two-phase model.

As Bird et al. [5] point out, there are three special cases for Eq. (4.42). First, if
S = 0, the PSF model reduces to a solid mass fractal model, so the Bird et al. [5]
water retention model reduces to the RS model. Second, when P = 0, the PSF model
would be a pore mass fractal structure where the water retention curve becomes a
step function indicating a monosize distribution; all pores are the same size. Third,
assume both P and S values are non-zero, and infinite number of iteration. In this
case α = φ, and the Bird et al. [5] retention model reduces to the de Gennes [13]
and Tyler and Wheatcraft [60] models.

Recently, Hunt et al. [31] extended the PSF approach to model a water retention
curve with two fractal regimes (Fig. 4.10). The two-regime PSF model is [31]

θ =

⎧
⎪⎨

⎪⎩

φ h < hmin

φ − α1
[
1 − (

h
hmin

)D1−E]
hmin < h < hx

φ2 − α2
[
1 − (

h
hx

)D2−E]
hx < h < hmax

(4.43)
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Fig. 4.10 Schematic of a
water retention curve with
two fractal regimes (after
Hunt et al. [31])

where D1 and D2 are the pore-solid interface fractal dimension of the first and
second regimes, respectively, and φ2 is the porosity of the second regime, equal to
the water content at the crossover point whose tension head is hx.

4.4.6 Millán and González-Posada [38]

Considering that the water retention curve includes both structural and textural
pores, and following the power-law model of de Gennes [13], Millán and González-
Posada [38] assumed two fractal regimes, and proposed the following piecewise
function

θ =
⎧
⎨

⎩

φ
(

h
hmin

)D1−E
, h < hx

θx
(

h
hx

)D2−E
, h > hx

(4.44)

where D1 is the fractal dimensionality of the first regime (which typically captures
structural pores), D2 is the fractal dimensionality of the second regime (textural
pores), and θx is the water content at the cross-over point (pressure hx) where scal-
ing behavior changes from structural to textural. Note that h is a tension head (suc-
tion or negative pressure) taking a positive value. Equation (4.44) is a special case
of Eq. (4.43) where α1 = φ, and α2 = φ2 = θ2. Ojeda et al. [44] proposed the same
function as Eq. (4.44) for water retention curve model. In general, each regime needs
to span at least a couple of orders of magnitude in the independent variable as sug-
gested by Avnir et al. [3].

4.4.7 Cihan et al. [11]

Following Perfect [47] and the fact that in a natural porous medium pores of a given
size are not necessarily drained with the same probability of drainage due to bottle-
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neck effect or incomplete pore connectivity, Cihan et al. [11] proposed a general
scale-variant fractal drainage model, which can be simplified into two scale-variant
and scale-invariant models. In their general scale-variant drainage model, the num-
ber of pores of a given size l can be expressed as

Np(l) = (
bE − bD

)(
bi−1)D (4.45)

where D is the mass fractal dimension, b is a scaling factor, and i represents number
of iterations.

Considering the probability of drainage (Pd) due to incomplete pore connectivity,
Cihan et al. [11] defined the number of drained pores as

Nd(l) = (
bE − bD

)(
bi−1)Dd (4.46)

where Dd is the fractal dimension for the drained pore space, and Pd is the ratio of
the drained pore space to the total pore space (0 ≤ Pd ≤ 1).

The cumulative volume of the drained pore would be [11]

Vd(l) = Pd

(
bE − bD

bE − bDd

)
(
1 − (

bi
)D−E)

(4.47)

Note that they assumed that Pd is constant, which means that the same proportion
of pores empties at each iteration.

The volumetric water content at the ith step is determined as

θi = φ − Vd(l) = φ − Pd

(
bE − bD

bE − bDd

)
(
1 − (

bi
)D−E)

(4.48)

Combining Eq. (4.48) with Eq. (4.38), then dividing by total porosity, gives the
general scale-variant model of Cihan et al. [11]:

θ

φ
= 1 − Pd

φ

(
bE − bD

bE − bDd

)(

1 −
(

h

hmin

)D−E)

(4.49)

Given that porosity is typically known (whether measured or calculated from bulk
density and particle density data), Eq. (4.49) includes 5 unknown parameters (i.e.,
Pd, D, Dd, hmin, and b) whose values cannot be simultaneously determined by
direct fitting to measured soil water retention curve.

There are two special cases for Eq. (4.49). First, if one sets Pd = 1 such that all
the largest pores drain completely, Eq. (4.49) reduces to

θ

φ
= 1 − 1

φ

(
bE − bD

bE − bDd

)(

1 −
(

h

hmin

)D−E)

(4.50)

Second, as Dd = D, the ratio of the number of drained pores to total pores at any
iteration remains constant and equal to Pd. Therefore, Eq. (4.49) is simplified to

θ

φ
= 1 − Pd

φ

(

1 −
(

h

hmin

)D−E)

(4.51)

Equation (4.51) is similar to the Perrier et al. [51], Bird et al. [5], and Deinert et al.
[17] soil water retention curve models. However, the interpretation of each model’s
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parameters is different; of these, only the Bird et al. [5] treatment is based on a
three-phase model, whereas Deinert’s [17] treatment is distinct from that of Perrier
et al. [51] by their inclusion of the additional descriptor equal to the pore-volume
fractal dimension.

4.4.8 Deinert et al. [17]

It was recently proposed [10] that tension head (or capillary pressure) should be
related to fluid interfacial area rather than pore diameter (assumed in the Young-
Laplace equation; h = A/r) under equilibrium conditions. Deinert et al. [16] also
indicated that the variation in fluid interfacial area with fluid volume is a significant
factor which determines equilibrium capillary pressure. Following Mandelbrot’s re-
lationship between surface area, As, and volume, V , of a fractal object, A3

s ∝ V Ds

[37] where Ds is surface fractal dimension, Deinert et al. [17] proposed the tension
head (h) at equilibrium proportional to a power of the pore volume (V )

h ∝ V (Ds−3)/3 ∝ rDs−3 (4.52)

where r is the radius corresponding to the pore volume V . In the limiting case
Ds = 2, Eq. (4.52) has the tension head inversely proportional to V 1/3 and r , anal-
ogous to the Young-Laplace equation.

Combining Eq. (4.52) with the Perrier et al. [51] model gives

θ = φ − Vmax

Vt

[

1 −
(

h

hmin

) D−3
3−Ds

]

(4.53)

in a 3D system. Note that Eq. (4.53) reduces to the Perrier et al. [51] model,
Eq. (4.33), when Ds = 2, meaning that the pore-solid interface is smooth.

4.5 A General Fractal Model for the Soil Water Retention Curve

We consider a two phase (pore and solid) model with a continuous probability den-
sity function like Eq. (4.2) rather than using a discrete fractal approach such as the
RS model. In such treatment, the power-law probability density function describing
the pore sizes is written

f (r) = Cr−1−Dp , rmin < r < rmax (4.54)

where C is a constant coefficient (a normalization factor), and rmin and rmax are
the lower and upper limits of the (truncated) fractal distribution. As we mentioned
previously, if we require the integral of Eq. (4.54) from rmin to rmax to be equal to

1, then the coefficient C takes the value D/(l
−Dp
min − l

−Dp
max ).
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The porosity of the medium (proportional to the total pore volume) may be found
by integrating r3f (r) between rmin and rmax to obtain

φ =
∫ rmax

rmin

ξr3f (r)dr = ξC

3 − Dp

[
r

3−Dp
max − r

3−Dp
min

]
(4.55)

where ξ is a normalization factor with units length−3, and a numerical value that
depends on the pore shape. The water content as a function of r can then be defined
as

θ =
∫ r

rmin

ξr3f (r)dr = ξC

3 − Dp

[
r3−Dp − r

3−Dp
min

]
(4.56)

Equations (4.55) and (4.56) differ only in the upper limit of the integral: porosity
is scaled over all pore radii (from rmin to rmax) in Eq. (4.55), while water content
is defined as the cumulative pore volume from smallest pore radius (rmin) to some
arbitrary value of r . Note that this ignores accessibility (percolation) issues, and
water held on the rough surfaces of pores with radii larger than r .

Combining Eqs. (4.55) and (4.56) with the capillary equation h = A/r gives the
soil water retention curve in terms of relative saturation

θ = φ − β

[

1 −
(

h

hmin

)Dp−3]

hmin < h < hmax

S ≡ θ

φ
= 1 − β

φ

[

1 −
(

h

hmin

)Dp−3]

hmin < h < hmax

(4.57)

in which β = φr
3−Dp
max /(r

3−Dp
max − r

3−Dp
min ). The bounds on the tension are hmin =

A/rmax, and hmax = A/rmin.
This general fractal model for the WRC (Eq. (4.57)) reduces to the Tyler and

Wheatcraft [60] model for β = φ, and to the RS model for β = 1. The increased
generality of this model means that it is can address a wider range of media. Equa-
tion (4.57) is consistent with the model developed by Perrier et al. [51], except that
in their model β = Vmax/Vt, where Vmax is the upper bound on the total pore volume
as rmin approaches 0, and Vt is the total volume of a soil sample.

Note that all WRC models discussed above (except Bird [4]) ignore water trapped
on the rough surfaces of pores. While Bird [4] included the residual water content
in his treatment, its contribution to the soil water retention curve model is as a fit-
ting parameter rather than a physically interpreted factor. The approach of Toledo
et al. [57] has some promise, but one should consider carefully before combin-
ing a surface wetting model with a model based on the strong wetting assump-
tion.

4.6 Assumptions in WRC Measurement and Modeling

The preceding discussion tacitly assumes that the water retention data are good,
but as with all measurement, there exist procedural trade-offs, assumptions, and
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error. We refer back to Sect. 3.5, where many issues were raised; here we raise
a few additional issues that will play into further discussions of the WRC in
Chap. 8.

4.6.1 Finite-Size Effects at High Saturations

Larson and Morrow [35] indicated that the soil water retention curve depends
not only on the geometrical and wetting properties of individual pores but also
upon the pores’ connections to the surface of the sample. Since pores’ connec-
tions (accessibility) depend on the distance from the sample surface, the WRC
must be sensitive to the sample size. In fact, pores that are close to the surface
of a sample are accessible more than interior pores. It is possible in natural porous
media that some large pore bodies might be connected to others via small pore
throats. These pores are not drained until a sufficient large suction relevant to the
largest pore throats is executed. Therefore, they are assigned to the small pore
bodies (or large suction) part of the pore-size distribution incorrectly [35]. Dul-
lien [18] also indicated that mercury intrusion method results in the entry pore-
size distribution rather than the real one. One possible practical way to obtain a
more real pore-size distribution is to reduce the fraction of less accessible interior
pores by decreasing the sample size. Larson and Morrow [35] studied the sam-
ple thickness effect on soil water retention curve by experiments. Their results
indicated that as the sample size decreased, the wet end of soil water retention
curve became sharper which is consistent with the physical interpretation of air
entry value where air starts effectively invading through the sample. Thus, the ex-
istence of such a disrupting point (air entry value) at the wet end of soil water
retention curve questions the application of the continuous form proposed by van
Genuchten [62].

4.6.2 Non-equilibrium Condition at the Dry End

It is theoretically assumed that soil water retention curve is measured under equi-
librium conditions. However, in practice this assumption becomes more unrealistic
as the soil dries [6, 29, 30]. This lack of equilibrium means that water that doesn’t
drain when it “should” is attributed to subsequent “equilibrium” pressures in the
sequence—to pores smaller than those that actually held it, or to residual water in
the case of the final pressure.

Bittelli and Flury [6] found errors in soil water retention curves measured with
pressure plates, and reported large discrepancies between pressure plate and dew
point meter measurements at matric potentials less than −100 kPa: water content
at −1.5 MPa as determined from pressure plates was twice that measured by the
dew point meter method. They also indicated that the MvG [42, 62] model under-
estimated unsaturated hydraulic conductivity determined from soil water retention
curve measured with pressure plates for a silt loam soil sample.
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Fig. 4.11 Apparent contact
angle αa as a function of
capillary number w for
silicone oils (completely
wetting αe = 0) experiments
on a glass capillary (after
Hoffman [26])

4.6.3 Contact Angle Assumptions

The contact angle of pure water on smooth clean mineral surfaces is generally zero,
but where the surface is rough or the fluids are moving, the contact angle can be
considerably greater than zero and may even exceed 90°. In an outstanding review
paper, de Gennes [14] discusses static and dynamic wettings, and connects them
to wettability, wetting transitions, long-range forces e.g., van der Waals, and fluid
dynamics. For forced flow in a capillary (pipe), de Gennes considers the experiments
of Hoffman [26], who measured velocities for two series of fluids e.g., silicone oils
(completely wetting αe = 0; where αe is the contact angle at equilibrium) and other
oils and industrial products (partially wetting αe > 0) in a glass capillary of 2 mm in
diameter. Hoffman [26] measured an apparent contact angle (αa) by a photographic
technique. Introducing a dimensionless parameter, the capillary number w (w =
uLη/ρg; where uL is the local velocity, η is fluid viscosity, ρ is fluid density, and
g is gravitational acceleration), Hoffman [26] found a universal relation between
w and αa (w = F(αa) where F denotes a function) shown in Fig. 4.11. As can be
seen, Hoffman’s experiments covered almost five orders of magnitude of capillary
numbers (and velocities). Note that αa(w) first increases, then levels off around
w = 1, αa → π .

Revisiting Hoffman’s experiments, de Gennes [14] found that at low velocities
(w < 10−1), the Hoffman data can be represented in the form

w = ξαm
a (4.58)

where ξ is a constant coefficient, and m = 3 ± 0.5. Later, de Gennes [15] derived
Eq. (4.58) theoretically, with m = 3 for the case of a perfectly wetting fluid.

In a second series of experiments involving partially wetting fluids, Hoffman [26]
could still express his data in terms of apparent contact angle αa and equilibrium
contact angle αe > 0, finding w = F(αa) − F(αe). However, a more straightfor-
ward equation was not proposed. de Gennes [15] related the local velocity uL to
the macroscopic velocity u through the tortuosity parameter τ > 1 (uL = τu), and
derived a dynamic capillary pressure for the imbibition process:

pd ∝ lcw
2/3τ 5/3 (4.59)
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where pd is the dynamic capillary pressure, lc is the length of the contact line, and τ

is the tortuosity parameter. When the randomness is weak in the porous medium, de
Gennes [15] postulated that lc would be independent of the capillary number, but in-
versely proportional to pore radius. Under this condition, the de Gennes [15] results
agree with the empirical equation that Weitz et al. [63] proposed from experiments.

4.6.4 The Power-Law Form of the WRC

Although the same power-law form is presented for soil water retention curve
by both de Gennes [13] and Tyler and Wheatcraft [60], the de Gennes model
(Eq. (4.28)) features the surface fractal dimension, while the Tyler and Wheatcraft
model (Eq. (4.31)) features the pore space fractal dimension. As we saw in Sect. 4.2,
these different dimensions exert different influences on the WRC. The distinction
becomes important when the goal is to predict the WRC from 2D or 3D soil images,
where one can choose to measure the fractal dimension of the pore space, the solid
matrix, and/or the pore-solid interface.

Crawford et al. [12] argued that the WRC “is a complicated function of both the
pore-size distribution and the connectivity, and does not depend in a simple way on
the spatial correlation of structure.” They further concluded that the interpretation
of the WRC is ambiguous because a power-law relationship between tension head
and water content could be a consequence of a fractal pore space, a fractal solid ma-
trix, a fractal pore-solid interface, or a non-fractal self-similar pore-solid interface.
They measured fractal dimensions of both the pore space and the solid matrix from
soil thin sections, and found that the fractal dimension of solid matrix was a better
predictor of the exponent in the Tyler and Wheatcraft [60] model than the fractal
dimension of pore space. However, they did not measure surface fractal dimension
from 2D images, and it is not certain that the Tyler and Wheatcraft model is the
best basis for comparison. Building on the Crawford et al. [12] results, Deinert et al.
[17] found that the exponent of the soil water retention curve fractal model is pro-
duced not only when either the pore space or the pore-solid interface is fractal, but
also when both are fractal. Thus the question whether surface fractal dimension de-
termined from soil images could provide an accurate characterization of soil water
retention curve remains unanswered.

4.7 Conclusions

In the previous chapter we raised the question of how best to model fluid movement
in a porous medium. Of course the specific answer varies from process to process,
and from medium to medium, but we argued that in general (1) a pore network
model with a fixed grid was poorly suited to model a medium with a pore size
distribution wider than (say) an order of magnitude, and (2) there are advantages to
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having a closed-form or at least semi-analytical model. It was in that context that
we devoted this chapter to fractal models of the porespace and the WRC.

It is obvious that fractal mathematics are a good match for porous materials
whose fundamental parameters have fractal characteristics. And in fact, we saw that
soil with a fractal particle size distribution seems to be well described by a very
simple fractal porespace model such as RS. The description is good enough that at
several points we questioned whether differences between model and measurement
were due to model deficiencies or measurement issues! The excellent predictions of
such simple models support further investigations into their utility.

Nonetheless, some differences between model and measurement must be due to
the fractal models having (at this point) no percolation concepts built in. Models
such as RS are in some sense no different from the capillary bundle model: they do
not include accessibility, scale effects, or critical behaviors at thresholds. Addition-
ally, the critical pore radius rc, and the threshold water content θt, have not been
clearly related to percolation concepts. We take up these issues in the following
chapters.
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Chapter 5
Specific Examples of Critical Path Analysis

At the end of Chap. 2, the general technique of critical path analysis was introduced
within the framework of the electrical conductivity of disordered systems. In many
systems the charges that move between these sites are electrons, but in other cases
they are ions, or even protons. Critical path analysis forms the basis of much of the
remainder of this book. However, there are some subtleties to the technique, and
its application cannot be as easily generalized as is often assumed: to some extent
every case or system must be evaluated separately.

In typical solid-state applications, conductances are connected between sites,
which are located randomly in space (why?),1 so the critical bond fractions from
the lattice models of Chap. 1 are not directly applicable. Nevertheless, when trans-
port is locally defined according to, say, the probability per unit time that an electron
moves from one clearly defined site to another, then it is clear that the appropriate
form of percolation theory to apply is bond percolation, even though one may not
know from the results of Chap. 1 what an appropriate bond percolation threshold
is. But in porous media it is not initially obvious even which form of percolation
theory—bond, site, or continuum—should be used. Network models, which distin-
guish carefully between pore bodies and pore throats, and for which it is known
that the chief limitation to flow comes through the pore throats, clearly require a
bond percolation approach. But we contend that use of a continuous random fractal
model requires application of continuum percolation theory. If continuum perco-
lation is not used, one can make a good case for treating the wetting of a porous
medium as a site percolation problem, and the drying of the same medium as a bond
percolation problem [35]. In each of these cases, for which an important random
component of the model is already linked with the topology of the connections, the
critical percolation probability becomes a major issue, especially when the distribu-
tion of local flow (or transport) rates is very wide, because an important component
of the analysis is determining the critical path.

1In solid-state physics applications, electronic transport is wave-like in ordered systems. Localiza-
tion of electrons and hopping transport occur primarily in the presence of disorder.
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In the electrical conductivity in condensed matter systems described below (and,
if our interpretation is correct, also in humid clay minerals, Sect. 7.4), transport
occurs by the “hopping” of charges from site to site. The term “hopping” means
that charges, which are located on specific sites most of the time, may jump to
another site in a much shorter time. “Hopping” can be a classical process by which
a particle jumps over an energy barrier to a neighboring site, or it can be a quantum
mechanical process whereby the particle tunnels through an energy barrier.

Consider first the classical process. While the typical time taken to jump to an-
other site is essentially zero, the time a charge spends “waiting” to jump is typi-
cally an exponential function of the energy barrier, E, between the sites, that is,
τ = ν−1

ph exp(E/kBT ). Here the quantity νph is a vibrational or “attempt” frequency,
and kBT is the product of the Boltzmann constant and the temperature. The sub-
script, ph, refers to a phonon, a quantized lattice vibration. The exponential de-
pendence on energy, E, ultimately derives from the probability that the energy to
transport the particle over the barrier can be absorbed by the particle from thermal
fluctuations in the surroundings, and the probability that such thermal fluctuations,
or “phonons,” may be found is proportional to the Boltzmann factor, exp(−E/kBT ).
This “waiting” time may also be loosely referred to as a relaxation time, or a hop-
ping time. In disordered systems, such energy barriers can vary widely from place
to place, and the total time required to transport charges through the material (re-
lated to an effective velocity, or current) depends on all the waiting times along the
particular path followed. For dc conduction in macroscopic natural systems, there
is usually enough time, enough individual charges, and enough local heterogeneity
that the dominant transport paths can be identified as those with the “least resis-
tance,” or with smallest transport times, that is, smallest activation energies.

In the quantum process, the transition rates are related through Fermi’s “golden
rule” (see any fundamental text on quantum mechanics) to the square of overlap
matrix elements calculated between localized “hydrogenic” wave functions. The
electrons are localized on sites due to disorder, and occasionally tunnel from site to
site. This tunneling introduces an exponential factor with argument proportional to
twice (from the operation of squaring the matrix element) the separation of sites.

5.1 r-Percolation

The first system investigated in terms of critical path analysis [1] was a slightly
idealized representation of impurity conduction in crystalline semiconductors. This
system is represented schematically in two dimensions in Fig. 5.1 and can be de-
scribed as follows. Sites, i, are located randomly in three-dimensional space (their
individual positions are uncorrelated) with a mean concentration, N0. Resistances,
Rij , between each pair of sites, i, j , have the values [26],

R−1
ij = e2νph

kBT
exp

[

− E0

kBT

]

exp

[

−2rij

a

]

≡ R−1
0 exp

[

−2rij

a

]

(5.1)
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Fig. 5.1 A schematic (and
two-dimensional)
representation of the
Ambegaokar site percolation
treatment of r-percolation. If
one draws spheres of a given
radius, r , about every site on
the network, when the radius
of these spheres reaches rc,
an interconnected network of
spheres of infinite size will
appear. This rc is the critical
radius for percolation and
defines the minimum possible
value of the maximum
resistance encountered by the
current

In this expression for Rij the only variable quantity is rij , the distance between sites
i and j . The other quantities are the electronic charge, e, a fundamental vibrational
frequency, νph ≈ 1012 Hz, the Boltzmann constant kB, the temperature T , a uniform
activation energy, E0, and a fundamental length scale, a. The magnitude of a is a few
nanometers and its origin is in its description of the radius of the hydrogenic wave
function. Typical site separations, rij , may be 5 to 15 times larger. Equation (5.1)
actually arises from consideration of equilibrium transition rates, wij , that describe
the probability per unit time that an electron will jump from site i to site j . When
rij /a � 1, wij is very small, and it is very difficult, and thus unlikely, for an electron
on site i to jump to site j in a short time. In Sect. 7.4 we will revisit this subject
when we consider a time-dependent (or frequency-dependent) electrical field.

Since in Eq. (5.1) all the quantities except rij are constant, it is convenient to ex-
press the individual resistances in terms of a constant prefactor, R0 and the random
variable rij . The resistances actually represent averages over local stochastic pro-
cesses involving the sudden hopping motion of electrons from, e.g., site i to site j .
Because the only variable in the resistances is the site separation, r , this system is
also called r-percolation. Note that the origin of the exponential function in rij /a

most simply relates to an overlap in electronic (hydrogenic) wave functions on sites
i and j , and represents a tunneling probability. In the more complicated r–E per-
colation discussed in the following subsection, the physical interpretation of this
function remains the same.

Let the mean concentration of sites be N0. Since the placement of the sites is
random, the probability density function W(r), for finding a site j within dr of a
distance r of site i, is proportional to the differential volume, 4πr2dr :

W(r)dr = 4πr2N0dr (5.2)
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The mean number, 〈N〉, of sites j within a distance r of i is then,

〈N〉 = 4

3
πr3N0 (5.3)

When r is chosen so that 〈N〉 = 1, r must be the typical site separation, b, i.e.,
(4/3)πb3N0 = 1. A typical value of the quotient rij /a = b/a may be 10 or larger, so
a site which is twice as far from a given site as the typical nearest neighbor distance,
b, will be connected to it with a resistance which is e10 ≈ 104 larger than the typical
value. Thus if one starts to connect appropriate resistors between neighboring sites
in Fig. 5.1 the resistance values may be spread over 10–20 orders of magnitude or
more. This exponential dependence of Rij on the random variable rij makes the
spread of Rij values enormous, and promotes the value of percolation theory for
finding the macroscopic transport coefficients.

We make use again of the probabilistic identity W(r)dr = W(R)dR, familiar
from substitution of variables in integration, to transform Eq. (5.2) to

W(R) = πa3N0

2R
ln2

(
R

Ro

)

= 3a3

8b3R
ln2

(
R

Ro

)

(5.4)

Note the appearance of the factor R−1, which is a result of the fact that the Rij are
exponential functions of the random variable, rij . Insofar as the Rij are exponential
functions of random variables, this power of −1 is universal.

For ill-condensed matter (impurity conduction systems, glasses, disordered ce-
ramics, super-cooled liquids, etc.), this type of local transport (quantum mechanical
tunneling and/or thermally activated hopping) is the rule rather than the exception,
and the factor R−1 leads to a number of universal results, although these results
are not discussed here. But for most applications in porous media, local resistances
(whether electrical or hydraulic) will not be of this form, but are actually powers of
random variables. This will lead to fundamental differences between the two sys-
tems. The logarithmic factor in Eq. (5.4) is also a product of the functional form
of the resistances, but its specific form, ln2(R/R0), requires also that the pdf of
the site separations, Eq. (5.2), be a power law with power 2. If the pdf of the site
separations were an exponential function of the distance (as is the case for nearest-
neighbor separations in a one-dimensional analogue to the present system), then
the logarithmic factor would be replaced with a power. That power, in contrast to
R−1, is not universal, but depends on the specifics of the system, such as the ra-
tio b/a.

Now that we have the expressions for the local resistance values in terms of site
separations, and the pdf for those site separations, it is, in principle, a straightforward
process to find the critical resistance of the system. What is missing is a reference
to percolation. Clearly the problem under discussion is most fundamentally related
to bond percolation, but in Chap. 1 there was no critical bond fraction given for a
random lattice. In fact, computer simulations [37] for such random systems have
shown that the percolation threshold is defined in terms of the average number of
bonds, α, connected to an arbitrary site. When α ≥ 2.7 ≡ αc, then the network of
interconnected bonds percolates. The percolation condition can now be satisfied by
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setting the average number of sites within a distance rc of an arbitrary site equal to
the critical value, αc:

αc =
∫ rc

0
4πr2N0dr =

∫ rc

0
3
r2

b3
dr (5.5)

The meaning of Eq. (5.5) is that on the average, αc bonds with lengths that do
not exceed rc can be connected to such an arbitrary site. That result implies that
it is possible to connect an infinitely large network of connected bonds that do not
individually exceed rc in length. This means that the largest resistance in such a
network is given by Rc = R0 exp(2rc/a).

The solution of Eq. (5.5) is

rc = α
1/3
c b (5.6)

The critical resistance, Rc, is then

Rc = R0 exp

[
2α

1/3
c b

a

]

(5.7)

and is not obtainable by any procedure based on averaging. Furthermore, with
α

1/3
c ≈ 1.4 and b/a ≈ 10, Rc ≈ R0 exp(28) ≈ R01012, two things are apparent:

(1) paths which allow a space between sites even twice the critical separation have
resistances 12 orders of e larger, and (2) using a typical separation 2b/a in place
of the critical separation underestimates the controlling resistance by four orders of
magnitude. These are the reasons why predictions of transport processes that are not
based on percolation theory will fail. Note that Eq. (5.7) can just as easily be derived
if one considers the dimensionless variable, ξ ≡ 2r/a, such that R = R0 exp ξ . The
integrand is then modified by the extra factor (a/2)3 and the variable of integration
becomes ξ instead of r , but the functional dependence is still ξ2. Thus one finds
ξc = (2/a)α

1/3
c b, leaving unchanged the result that Rc = R0 exp[(2/a)α

1/3
c b]. For

r-percolation, such a change of variables seems needlessly complicated, but for r–E

percolation, application of such a technique using a dimensionless variable proves
to be very useful.

We can find the typical separations, d , of all resistances R < Rc as follows:

( 4π
3 )d3

( 4π
3 )b3

[∫ rc

0
4πr2N0dr

]

= 1 (5.8)

The solution of Eq. (5.8) is,

d = α
− 1

3
c b (5.9)

This result, Eq. (5.9), allows the percolation condition to be expressed in a nice
geometric form:

rc = α
2
3
c d (5.10)

i.e., that the typical length of bonds, rc, is proportional to their typical separation,
d , with a proportionality constant α

2/3
c . The interpretation is thus clear that a larger



136 5 Specific Examples of Critical Path Analysis

value of αc requires that the typical bond length be a larger fraction of the typical
bond separation, making it increasingly difficult to connect the bonds into a perco-
lating network.

Although we have treated the impurity conduction problem as a bond percolation
problem, it can be easily represented in terms of site percolation through a geomet-
rical construction. Ambegaokar et al. [1] presented this problem initially in terms of
overlapping spheres (see the circles in Fig. 5.1). Their idea was that one could con-
struct spheres of an arbitrary but uniform radius, r , about each site i, and increase r

until at r = rc a path of touching or overlapping spheres could be found. Imagining
these spheres to be metallic (and not bothering about the physical problems of their
overlap) allows an obvious site percolation interpretation in terms of a connected
conducting path. The largest resistances on that path, where the spheres just touch,
is Rc, and this value (Eq. (5.7)) dominates current.

Proceeding with critical path analysis, we need to find a useful expression for
p − pc, in terms of which all other percolation variables are expressed. But we
have expressed Rc not in terms of a critical bond probability, but rather in terms
of the number of connected bonds, αc. However, p − pc must be proportional to
α − αc. Thus the first step must be to express some arbitrary R, which for R < Rc

gives the maximum resistance on finite-sized clusters of interconnected resistors,
and for R > Rc gives the maximum resistance of the infinite cluster, in terms of an
arbitrary α. This is done as follows:

α =
∫ r

0
3
y2

b3
dy (5.11)

using y as a dummy (spatial) variable. Combining Eq. (5.5) and Eq. (5.7) gives

α − αc = r3 − r3
c

b3
=

(
a

2b

)3[

ln3
(

R

R0

)

− ln3
(

Rc

R0

)]

(5.12)

This expression is somewhat complicated. We factor r3 − r3
c in keeping with the

spirit of percolation theory, in which quantities are expanded to lowest order in
p − pc; thus (r − rc)(r

2 + rrc + r2
c ) ≈ (r − rc)3r2

c . In the second factor, which
contains only sums, r may be approximated as rc. This result is identical to the first
term in a Taylor series expansion of r3 − r3

c evaluated at the point rc. Then,

p − pc ∝ α − αc = r3 − r3
c

b3
≈ 3r2

c

b3
(r − rc) =

(
3aα

2/3
c

2b

)

ln

(
R

Rc

)

(5.13)

From Chap. 1 we can write for the conductivity of a subnetwork defined by a maxi-
mal resistance R,

σ = l

Rχ2ν
(5.14)

where l is the typical separation of resistances R, and χ is the correlation length
evaluated at a value of p corresponding to the chosen R. The point will be to opti-
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mize the right-hand side of Eq. (5.14) in terms of system and percolation parameters.
We can write χ as,

χ ∝ (p − pc)
−ν ∝ ln−ν

(
R

Rc

)

(5.15)

To address the separation of the largest resistances in the subnetwork we must use
a discretized distribution of resistance values rather than a continuous distribution,
because otherwise it is impossible to define “the largest” resistance values. Since
the resistances considered are exponential functions of a random variable, it makes
sense to discretize the distribution in steps of the natural constant e = 2.718, i.e.,
R = R0 exp(j), where j is an integer. Such a unit of resistance corresponds to an
increment in r of magnitude a/2. Then it is possible to write the separation of the
largest resistances, with length r , in terms of the separation, d , of all resistors with
R ≤ Rc,

l = d

[∫ r+a/2
r−a/2 4πr2N0dr
∫ r

0 4πr2N0dr

]− 1
3 = d

[
3r

a

] 1
3 = b

[
3r

αca

] 1
3

(5.16)

Whether this value of l has any relationship with the typical separation of maximally
valued resistances along the current-carrying paths on the infinite cluster is not yet
clear, however. While the distribution of resistance values on the infinite cluster may
be approximated as being the same as in the bulk (except terminated at R), it is clear
that the dominant current-carrying path might avoid most of the larger resistances.
Two widely different perspectives can be formulated for this problem. Stauffer (and
others) use the “links-nodes-blobs” model to argue l ∝ χ . Certainly it makes no
sense to choose l > χ , because one would then be basing the calculation of l on a
value of the controlling resistance smaller than the value used in Eq. (5.14). Hunt
[13] has used Eq. (5.16), which can lead to l 
 χ . While simulations clearly show
that l ∝ L in two dimensions, comparison of analogous results with experiments
on variable-range hopping systems in three dimensions [24, 25] has proved at least
ambiguous [13]. Below we give a self-consistent argument for using Eq. (5.16) or
slight modifications thereof.

l from Eq. (5.16) is not a function of the variable p − pc (or r − rc), and its
dependence on r ∝ ln(R) is weak. So for the purpose of optimizing Eq. (5.14), the
dependence of l on r may be neglected. Then one can write,

σ ∝ 1

R
ln2ν

(
R

Rc

)

(5.17)

It is easy to optimize such an expression for the dependence of σ on R with respect
to the arbitrary parameter R, so as to find the optimal value of the limiting resistance,
Ropt. Note also that it is immaterial whether the optimization is formulated in terms
of Rc or gc ≡ R−1

c . This equivalence is not preserved in typical problems in porous
media, as will be seen. The result of optimizing Eq. (5.17) is,

Ropt = Rc exp(2ν) (5.18)

a result which is independent of the details of the system. Note that if the Stauf-
fer argument is used the power of 2ν on the logarithm is reduced to ν, and
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Ropt = Rc exp(ν). In two dimensions the power of the logarithm is reduced by ν

in either perspective, so that the Stauffer argument yields Ropt = Rc, while a treat-
ment analogous to Eq. (5.16) would yield Ropt = Rc exp(ν). Ropt = Rc appears to
be confirmed in 2D simulations [14, 40].

How does one proceed further? The question which needs to be evaluated is,
what fraction of the largest resistors on the connected path is shorted by smaller
resistances? If l ∝ χ , the implication is that in the limit p → pc, all the largest
resistances are shorted. This argument appears to be inconsistent, especially in the
context of the optimization procedure, which in three dimensions leads to Ropt > Rc
(using either Rc exp(ν) or Rc exp(2ν)), and suggests that it is only inclusion of resis-
tances larger than the optimal value, Ropt, which does not change the conductivity.
Such a result is consistent with the physical result that 100 % of the largest resis-
tances are shorted only for the choice R ≥ Ropt. If Ropt > Rc, then it is not logical
to choose l as a singular function at Rc. If l is not singular at Rc, then l may be
approximated as slowly varying in the immediate vicinity of Rc, and the result (in
three dimensions) follows that Ropt = Rc exp(2ν), generating the self-consistent re-
sult that the fraction of shorted maximal resistors is only 1 at this larger value of R.

However, the above argument leaves a loophole in 2D. If l is assumed to be a
singular function of p − pc (l ∝ ξ) in 2D, then the optimization procedure does not
lead to Ropt > Rc, because of the cancellation of l/χ (in contrast to l/χ2 in 3D). Of
course one could also make the argument that l is not singular at Rc, and that result
would also be self-consistent. If both possibilities, which are mutually exclusive,
are self-consistent in 2D, it may imply that 2D systems allow different solutions
depending on the details of the problem. It certainly appears likely that the opti-
mization is fundamentally different in 2D than in 3D, since only the argument that
l is not singular at pc is self-consistent there. So we continue to use Eq. (5.16) (and
the appropriate analogue for variable-range hopping systems) for l in 3D systems.
Skaggs [39] and references cited therein discuss this subject in a detail beyond the
scope of this book.

An especially important physical result is an evaluation of the correlation length
at Ropt. To find this value of χ , simply substitute R = Rc exp(2ν) into the expression
(Eq. (5.13)) for p − pc, and raise to the −ν power. The result is,

χ(Ropt) =
[

b

3aνα
2/3
c

]ν

≡ L (5.19)

This value, denoted L, is particularly important because it gives (to within a numer-
ical constant) the structure of the optimal current-carrying paths. Thus the largest
holes in the current-carrying paths are of approximate radius L, percolation calcula-
tions of all transport quantities require that the system size be considerably greater
than L, or the effects of fluctuations will be large, etc. In the language of hydrology,
L3 would be the representative elementary volume (REV). Note that Berkowitz and
Balberg [4] already pointed out that in the neighborhood of the percolation thresh-
old, χ3 gives the REV; our result for critical path analysis is in conformance with
their analysis. Also analogous calculations of l and L for the hydraulic conductivity
of network models of porous media were verified [13] to give the right dependence
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Fig. 5.2 A comparison of the backbone clusters for maximum R values Rc and Ropt. Note that
in the first case the correlation length is infinite, and there is only one connected path across the
(finite-sized) system. In an infinitely large system there would still be only one connected path. But
for Ropt there are several connected paths (from Todd Skaggs, unpublished)

on system and distribution parameters, although the values from the simulations
were typically 30–40 % smaller than predicted.

Figure 5.2 gives a comparison of the backbone cluster for the largest R = Rc
with the corresponding cluster for the largest R = Rmax.
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5.2 r–E-Percolation (Variable-Range Hopping)

Amorphous semiconductors represent the classic case for the application of critical
path analysis. Here the energy is also a random variable, meaning that electrons can
have a variety of energy values. At a temperature T = 0, the electrons occupy the
lowest energy states and essentially do not move. At higher temperatures they can
move and there is a non-zero electrical conductivity. The Fermi energy at T = 0 di-
vides states occupied by electrons (with E < Ef) from those without electrons (with
E > Ef). Since we will consider only continuous energy distributions, Ef is then
the highest energy of any state occupied by electrons. In such systems, called r–E-
percolation, the resistances between individual sites are functions of two random
variables, energy and distance:

R−1
ij =

(
e2νph

kBT

)

exp

[

− Eij

kBT
− 2rij

a

]

(5.20)

T is the absolute temperature. The random energy, Eij , is either the difference in
energy from the initial, Ei , to the final, Ej , state (if this difference is positive and
the sites are on opposite sides of the Fermi energy), or it is the larger of the absolute
values of the two energies (measured with respect to the Fermi energy, Ef). The rea-
son for this peculiar definition of Eij is that the resistance is inversely proportional
to the probability per unit time that an electron jumps from site i to site j . This
probability is composed of the product of the conditional probability that an elec-
tron could jump from site i to site j , if it were on site i to begin with and site j were
empty, with the probabilities that an electron resides on site i and that no electron
resides on site j . The first probability brings in a factor of exp[−(Ej − Ei)/kT ], if
Ej > Ei , because of the need to find a phonon to deliver this energy to the electron.
The second probability is the product of the Fermi function, f (Ei) for electron oc-
cupation of a site at energy Ei , and 1 − f (Ej ) for no electron occupation of site j .
f (Ei) for example is often approximated by a Boltzmann factor in the energy differ-
ence Ei − Ef . So the energy term in the exponent represents a composite of effects
of site occupation and energy conservation.

The energies of the individual sites are considered to be distributed uniformly
between −W0/2 and W0/2, so that the probability that a site has energy within dE

of any given energy in that range is

W(E)dE = dE

W0
(5.21)

One can now write for the density of states (per unit energy per unit volume) at the
Fermi energy, Ef,

N(Ef) = 1

W0b3
(5.22)

where b is again the typical separation of sites. With two random variables, and with
local correlations introduced by the fact that neighboring bonds share one common
site (and its energy value), the application of critical path analysis is considerably
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more complex. In analogy to Eq. (5.5), one would have to integrate over three spatial
coordinates and one energy coordinate. Pollak [34] did this integration, obtaining the
result that,

σdc ∝ exp

[

−
(

T0

T

) 1
4
]

(5.23)

with

kBT0 ∝ W0

(
b

a

)3

(5.24)

The same result was obtained earlier by Mott [30], who however used an optimiza-
tion procedure for individual resistances. In this procedure electrons can hop greater
distances to relieve the energy increase, since there are more sites to attempt at larger
distances. The competition between energy and distance tends to shift slowly to-
wards a greater relevance of energy at lower temperatures (because of the ratio of
−E/kBT in the exponential function) so hops become longer and stay at energies
nearer the Fermi energy with diminishing temperature.

Mott’s procedure is not strictly valid, because it does not guarantee that the in-
dividual optimal resistances connect up to form a continuous path for current flow,
but it is cited more often because of its simplicity. Here we present an equally sim-
ple percolation argument. The argument is based on a generalization of Eq. (5.10).
If the maximum hopping energy allowed is Em (when rij = 0), and the maximum
hopping distance is rm (when Eij = 0), then we must have

Em

kT
= 2rm

a
(5.25)

This equation guarantees the existence of a maximum resistance, Rc =
R0 expEm/kT = R0 exp 2rm/a. Connectivity is guaranteed if we relate the typi-
cal separation of the sites utilized for the transport equal to the appropriate fraction
of the length of the individual resistors. To lowest order, the typical resistance length
is

〈r〉 =
∫ rm

0 r(4πr2)dr
∫ rm

0 (4πr2)dr
=

(
3

4

)

rm (5.26)

If one takes into account the fact that the occurrence of large hopping distances
must be suppressed because the energy range of sites must be increasingly restricted
with increasing r , the numerical coefficient (3/4) would be altered, so this factor
cannot be considered accurate.2 Choosing 1 for the numerical coefficient is therefore
equally justified, though slightly less accurate, and it is best simply not to attach any
importance to the factor (3/4).

2Getting that particular number was the motivation, in fact, for going beyond the particular calcu-
lation here to generate a fully consistent percolation calculation (Pollak, personal communication,
2005).
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The typical separation between sites with low enough energies (less than Em) is,

d = b

(
3

4π

) 1
3
[

W0

Em

] 1
3 =

(
3

4π

) 1
3
[

1

N(Ef)Em

] 1
3

(5.27)

Inserting the results of Eq. (5.26) and Eq. (5.27) into Eq. (5.10), and solving simul-
taneously with Eq. (5.25), yields

rm = a

(
α2

c

9π

) 1
4
[

1

kBT N(Ef)a3

] 1
4 ∝ a

[
kBT0

kBT

] 1
4 ∝ a

[
W0(b/a)3

kBT

] 1
4

(5.28)

This result is compatible with the prior results of Pollak [34] and Mott [30] since
rm/a = (T0/T )1/4, but it yields a slightly different numerical constant than their’s.
The numerical constants given here are not correct. Since, in order to connect sites
with smaller energies, the hopping distance thus increases with diminishing tem-
perature, this type of transport has become known as variable-range hopping. If the
combination of variables 2r/a + E/kT is defined to be ξ , then one can represent
the effects of the full percolation calculation in a form analogous to Eq. (5.5):

4αc
T

T0

∫ ξc

0
ξ3dξ = αc (5.29)

Instead of integrating over ξ2dξ as in r-percolation, here one must integrate over
ξ3dξ because of the existence of three spatial dimensions (random variables)
and one energy dimension (random variable). Clearly the result of the integral is
ξc = (T0/T )1/4. The integral thus expresses that the resistance values required for
percolation are spread through the interior of a four-dimensional volume. One can
calculate the typical spatial separation of the resistances with the largest values in
a similar way as for r-percolation, by noting that the largest resistance values are
spread out over the surface of this four dimensional volume:

l = a

(
T0

T

)(1/4)
[∫ ξc+1

ξc−1 ξ3dξ
∫ ξc

0 ξ3dξ

]− 1
3

= a

(
T0

T

) 1
3

(5.30)

Thus the largest resistances are located with a unit variation in ξ from the surface,
or percolating value, ξc. It is also possible to calculate the correlation length which
describes the dc conduction. To calculate the correlation length, it is necessary first
to find the fundamental length scale of the resistances. In the case of r–E percolation
only a fraction of the sites actually take part in the conduction process, and their
typical separation is a(T0/T )1/4, so that this fundamental scale is a(T0/T )1/4. Then
we have,

χ ∝ a

(
T0

T

) 1
4

(p − pc)
−ν = a

(
T0

T

) 1
4 [

kT
(
ξ4 − ξ4

c

)]−ν (5.31)

The substitution giving the second form on the right hand side was obtained by
writing Eq. (5.29) also for an arbitrary ξ (and α) and making p and pc proportional
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to α and αc. Linearization allows ξ4 − ξ4
c to be expressed as roughly ξ3

c (ξ − ξc), and
one finds

χ ∝ a

(
T0

T

) 1
4
[(

T0

T

) 1
4

ln

(
R

Rc

)]ν

= a

(
T0

T

)(1+ν)( 1
4 )

lnν

(
R

Rc

)

(5.32)

Evaluated at R = Rc exp(2ν), just as for r-percolation, this expression yields

χ(Ropt) ≡ L ∝ a

(
T0

T

)( 1+ν
4 )

(5.33)

One can now write for the electrical conductivity,

σ = l

L2Ropt
= a

(
T0
T

)1/3

[
a
(

T0
T

)( 1+ν
4 )]2

R0 exp
(

T0
T

)1/4
(5.34)

Note that in the case of either r-percolation or r–E percolation systems, the uncer-
tainty in the calculation of l has no effect on the exponent (2α

1/3
c b/a or (T0/T )1/4,

respectively). The effect is thus on the pre-exponential, which is only a power of the
temperature. Since the exponential function is a much more rapidly varying function
of system parameters (and, in the case of variable range hopping, of the tempera-
ture), it was possible to use the percolation theoretical argument to predict the elec-
trical conductivity over as much as 14 orders of magnitude of the conductivity with
minimal discrepancy with experiment (though not in a-Si [25] rather with a-Si:H:Au
[24]). While such accuracy is clearly a selling point in the theory it does not, except
perhaps in the latter case, help to distinguish between theoretical treatments of l.
The only reason why, in the latter case, it was possible to make any judgment as to
the accuracy of a particular result for l was that experimental data were reported in
the form of the ratio of the ac to the dc conductivity (which eliminated the exponen-
tial T dependence), but a detailed treatment of the ac conductivity is a topic beyond
the present scope. In the case of the hydraulic conductivity, which has no equiv-
alent separation of exponential and non-exponential contributions, this uncertainty
in theory has reduced confidence somewhat in the validity of the percolation-based
treatment and introduced some confusion.

An important point of this exercise is to demonstrate from basic physics how to
calculate relevant length scales. The numerical values of these length scales are not
well-defined, but their dependence on system parameters has been approximately
verified both in comparison with experiment [13], and in numerical simulations [14].
As problems of hydrology are addressed, it will be important to have prior guidance
for calculating these quantities.

5.3 Saturated Hydraulic Conductivity

One difference between hydrological and solid state applications of critical path
analysis is that in the former case the sites take up a non-negligible volume. In
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addition, in spite of the approximation of (probabilistic) fractal modeling, the coor-
dination number of large pores is likely larger, on average, than of small pores. As a
practical matter, we cannot put pores on a regular grid if their lengths and radii vary
over more than an order of magnitude. For all of these reasons, it is better to base
the critical path analysis on continuum percolation theory than to use the bond or
site versions.

In continuum percolation, accurate application of critical path analysis requires
an expression for the critical volume fraction for percolation, which we denote Vc. In
contrast to the solid-state problems discussed above, this value is not known from
simulations, but we will show in Chaps. 6 and 7 that it is approximately known
empirically from experiments in unsaturated media involving solute diffusion [29],
electrical conductivity, and air permeability. Balberg [2] (inspired by earlier work of
Kogut and Straley [21]) already gave a detailed discussion of continuum percolation
problems in porous media. In particular he demonstrated that in continuum perco-
lation, transport exponents may be non-universal, but this topic is postponed until
the next chapter. Finally, the local transport law (Poiseuille flow) is a power law
in geometric quantities such as the pore radius and the pore length, rather than an
exponential function. This difference will be important too, and the implications of
this difference have not been completely appreciated [3, 20, 23] in existing critical
path applications to the saturated hydraulic conductivity.

Let’s assume low Reynolds number flows, meaning that for any given geometry
the dependence of the flow through a pore can be written in terms of an effective
pore length and pore radius. The appropriate way to relate these radii and lengths to
physical lengths requires pore-scale treatments of the Navier-Stokes equation. For
calculating the ratio of the hydraulic conductivity at an arbitrary saturation to its
value at full saturation such complications are unimportant, as long as the fractal
model of the pore-space is accurate, since these geometrical factors do not change
with pore size. However, to calculate the hydraulic conductivity at full saturation,
such a complication is important and can only be resolved exactly by detailed imag-
ing and careful numerical work at the single pore scale, subjects not addressed in
this book. Note that the proposed activity of calculating the hydraulic conductiv-
ity is called “upscaling” (at the pore scale) in the hydrology literature, but in the
physics literature it would be referred to something like, “calculating an effective
macroscopic transport parameter from its microscopic variability.”

We have already given the pdf of the pore distribution in the previous chapter.
Now we need to relate the pore dimensions to local conductances. Poiseuille flow
implies that pores of radius r and length l have a hydraulic conductance

gh ∝ r4

μl
(5.35)

with μ the viscosity of the fluid, here assumed to be water. The reason for the form
of Eq. (5.35) is that in the linear regime (assumed here) the total flow through such
a pore is simultaneously proportional to gh, and to the pressure difference across the
pore, �P . The numerical constants are suppressed. If the medium is assumed to be
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fractal, the aspect ratio (shape) of pores is, on the average, independent of their size,
meaning that l must be taken as proportional to r . In this case, then,

gh ∝ r3 (5.36)

To calculate the hydraulic conductivity accurately under conditions of saturation,
one needs first to find a critical value of a conductance, gc, from critical path analy-
sis, then find expressions for l and χ , and finally optimize the result. The easy part
is to find gc. Under saturated conditions, rc is given through [16]

3 − Dp

r
3−Dp
m

∫ rm

rc

r3r−1−Dpdr = Vc (5.37)

with the critical volume content for percolation, Vc. Solution of this equation yields,

rc = rm(1 − Vc)
1

3−Dp (5.38)

Note that we can write for an arbitrary r ,

r = rm(1 − V )
1

3−Dp (5.39)

The critical conductance, gh
c must be of the form,

gh
c ∝ r3

m(1 − Vc)
3

3−Dp = r3
c (5.40)

We assumed [16], as in [40] (as well as [3, 20, 23] that both l and χ are proportional
to rc, so that the saturated hydraulic conductivity, KS, is represented by

KS ∝ r2
c . (5.41)

How does this arise?
First we linearize the difference V − Vc:

V − Vc = (3 − Dp)

(
rc

rm

)3−Dp
(

r − rc

rc

)

(5.42)

Then, for the case that gc ∝ r3
c , we can write V − Vc in terms of the conductance

difference:

V − Vc =
(

3 − D

3

)(
rc

rm

)3−Dp
(

g − gc

gc

)

(5.43)

For the optimization procedure, the material result is that V − Vc ∝ g − gc. The
optimization

d

dg

[
g(gc − g)2ν

] = 0 (5.44)

yields

gopt = gc

1 + 2ν
(5.45)

The factor 1 + 2ν could be written (if ν were very small) as exp(2ν). The reader
may verify that repeating the procedure with respect to the resistance yields Ropt =
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Rc/(1 − 2ν) which, again if ν were very small, would yield Ropt = Rc exp(−2ν),
and the two methods would be consistent (as in the exponential case above). But
ν = 0.88 (in 3D), which is not small, and the optimization procedure with respect
to the resistance yields a value which is outside the range of physical values. This
means either that it is preferable to use the optimization procedure with respect to
the conductance rather than the resistance, or that the optimization procedure is not
reliable in the present context. We choose to consider the optimization procedure
with respect to the conductance as reasonable, but to interpret the results with cau-
tion. There is a physical reason behind these results.

In the case where g is an exponential function of random variables (e.g., impurity
conduction systems), a small change in g is associated with a very small change in
p, because of the logarithmic dependence of p on g. When (as here) g is a power of
a random variable, the result is that a small change in g makes a change of roughly
the same magnitude in V (corresponding to p), which sweeps χ right out of the
range where percolation theory gives an accurate estimation of the separation of
dominant current-carrying paths. This means that for g very near gc the separation of
current-carrying paths can be very small, i.e., on the order of the separation of pores,
which is the same order as rc, and the same order as the separation of controlling
resistances along the dominant paths. For a pictorial example of such a contrast
between current-carrying paths for exponential and power law functions of random
variables, refer to Fig. 5.3. Note that the exponential case is the same as in Fig. 5.2.

For these reasons we [16] decided to formulate KS as proportional to

KS ∝ lr3
c

χ2
= rcr

3
c

r2
c

= r2
c (5.46)

However, it should be kept in mind that l and L could have been written as other
pore length scales with different numerical constants, meaning that in some sense
a proportionality to r2

c is a matter of convenience. Note that KS proportional to
the square of a pore radius is a result obtained by many other authors, including
Katz and Thompson [20] (also Kozeny [22]-Carman [8], Johnson and Schwartz
[19], Bernabé and Revil [6], and Torquato and Lu [42], none of whom used criti-
cal path analysis, but also Banavar and Johnson [3] and Le Doussal [23], who did).
Katz and Thompson [20] also used the critical radius, rc, and their critical path
analysis yielded as well the same sort of result for the critical radius, rc. However,
there is considerable uncertainty in the numerical prefactors, probably reflecting the
choice to make other pore length scales proportional to r2

c . Nevertheless, the Katz
and Thompson [20] and the Hunt and Gee [16] treatments of KS are loosely equiva-
lent. The focus here is not on KS, for which one really needs additional information
(pore shape, in particular). But it is essential to present the basic discussion of KS.
Also, although we anticipate that both percolation-based treatments could be im-
proved, in a controlled test [5] of four methods to calculate K (Kozeny-Carman, a
“stochastic” pore scale model due to Bernabé and Revil [6], and the Johnson and
Schwartz [19] treatment being the other three) the Katz and Thompson [20] result
came out on top. Notably, in the case of large variance the Kozeny-Carman results
came in a distant last place, although all four results were equally accurate in the
limit of low variance.
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Fig. 5.3 A comparison of the backbone clusters for maximum R = Ropt for the case that top the
resistances of the bonds follow Eq. (5.1) or Eq. (5.20), and bottom the bond resistances follow
Eq. (5.35), i.e., exponential vs. power law functions (from Todd Skaggs, unpublished)

5.4 Unsaturated Hydraulic Conductivity

Typical formulations [9, 27, 28, 31–33, 43] of the unsaturated hydraulic conductivity
are in the form of a ratio with KS. Reasons for this (discussed in previous chapters)
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are chiefly the typical lack of direct information regarding the pore space, and the
difficulty of formulating an accurate calculation of KS without explicit information
about pore sizes and shapes. However, in fractal systems, the particular pore shapes
are the same for all radii, and thus this geometric factor cancels out in the ratio of
K(S)/KS. The formulation of the hydraulic conductivity in this ratio also greatly
simplifies the application of critical path analysis.

The effects of partial saturation are treated using the premise that film flow per-
mits [7, 41] the porous medium to adjust to removal of water by evacuating all pores
with radii larger than some equilibrium value, which we call, r>. Thus effects of nei-
ther hysteresis nor non-equilibrium are considered yet. The following is taken from
Hunt and Gee [16]. The relative saturation is the quotient of the pore space volume
in pores with r < r> and the total pore volume,

S =
(

1

φ

)(
3 − Dp

r
3−Dp
m

)∫ r>

r0

drr2−Dp = 1

φ

[r3−Dp
> − r

3−Dp
0 ]

r
3−Dp
m

(5.47)

Remember from Chap. 4 that r0 and rm are the lower and upper bounds of validity
of the fractal description of the pore space. When r> = rm, Eq. (5.47) yields S = 1.

Next, the percolation condition relating the smallest (or critical) pore size to be
traversed, to the critical volume fraction, Vc, when the largest pore filled with water
has r = r>, is

Vc =
(

3 − Dp

r
3−Dp
m

)∫ r>

rc

drr2−Dp =
(

r>

rm

)3−Dp

−
(

rc(θ)

rm

)3−Dp

(5.48)

Equation (5.48) has the same form as Eq. (5.47), but the upper limit has been re-
duced from rm to r>, producing a related reduction in rc(θ) (and requiring its repre-
sentation as a function of θ ), consistent with the effects of partial saturation. Since
our goal here is to calculate the hydraulic conductivity as a function of moisture con-
tent we should consider using a threshold moisture content, θt, in place of the critical
volume fraction, Vc. This turns out to be a good plan, since solute diffusion exper-
iments demonstrate a vanishing of the diffusion constant at some moisture content,
θt. Together, Eqs. (5.37), (5.47), and (5.48) (and using θt in place of Vc) allow rc for
unsaturated conditions to be expressed in terms of rc for saturated conditions,

rc(θ) = rc(θ = φ)

[
1 − φ + (θ − θt)

1 − θt

] 1
3−Dp

(5.49)

The critical hydraulic conductance as a function of moisture content is now,

gc(θ) = gc(θ = φ)

[

1 − φ
1 − S

1 − θt

] 3
3−Dp

(5.50)

Equation (5.50) implies a scaling of the same form for the ratio K(S)/KS. The
hydraulic conductivity of the medium is controlled by the hydraulic conductance of
the rate-limiting pore throat, which is proportional to the cube of the critical radius.
How does the vanishing of the correlation length (and therefore the minimum path
separation) at the percolation threshold affect the critical path results for K(S)/KS?
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The answer is, not at all—at least to a very good approximation, over a fairly wide
range of moisture contents. Why? The answer has two parts: (1) such topological
complications only have a strong effect in the vicinity of the percolation threshold,
and (2) the calculation of KS takes into explicit account the competition between
the effects of finding the minimum value of the blocking or bottleneck resistance
and the infinite path separation. Thus in the calculation of K(S) = KS (S = 1), the
effects of the path separation are already included, and as long as the percolation
threshold is not approached too closely, there is very little change in these effects.
However, this perspective must be reevaluated for lower moisture contents, as the
percolation threshold is approached [15]. Thus we can now write for the unsaturated
hydraulic conductivity,

K(S) = KS

[

1 − φ
1 − S

1 − θt

] 3
3−Dp

(5.51)

a result which can also be written

K(S) = KS

[
1 − φ + (θ − θt)

1 − θt

] 3
3−Dp

(5.52)

While the present evidence is that Eq. (5.52) is accurate for typical porous media
over a wide range of moisture contents, it cannot be accurate [15] in the limit θ → θt.
In that limit, Eq. (5.52) yields

K(θt) = KS

[
1 − φ

1 − θt

] 3
3−D

(5.53)

But K(θt) from Eq. (5.53) is not zero as required; it is the hydraulic conductivity as-
sociated with the limiting conductance of the smallest pore in the system. However,
it is a requirement from percolation theory that the hydraulic conductivity vanish at
the percolation threshold, unless an alternate conduction mechanism exists with a
lower threshold value. Specifically, in this limit the hydraulic conductivity (like the
electrical conductivity) must vanish according to

K(θ) = K1(θ − θt)
μ (5.54)

How these results are to be reconciled is the subject of the next chapter; the reconcil-
iation illuminates the difference between the electrical and hydraulic conductivities
of porous media, and also clarifies the role of some exact results for non-universal
scaling of transport properties derived by Balberg [2].

5.5 Hydraulic Conductivity for Geologic Media: Parallel vs.
Series

In this section we present a general result, which may be utilized to “upscale” the
hydraulic conductivity in geologic media, that is to calculate an effective hydraulic
conductivity, Keff, when a wide distribution of individual K values exists. At the
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beginning of this chapter we argued that one should carefully address the difficulties
of each medium individually. We have also argued that the appropriate conceptual
view of this problem is not even upscaling the conductivity, per se. One should
characterize the dominant conduction paths in terms of their blocking resistance
value, and then find the frequency of occurrence of such paths. A discussion in
terms of the hydraulic conductivity implies already that the individual portions of
the medium have uniform conduction properties. Nevertheless, as witnessed by the
large number of such results for upscaling in use, there is a need to write a general
result, which can be applied as a simple algorithm. We write such a result here. As
yet it is untested in real situations, but it is clearly a conceptual advance over the
results currently in use.

It is a typical argument in geology to consider a horizontally layered system and
contrast the vertical flow properties with the horizontal flow properties. The effec-
tive hydraulic (or electric) conductivities under such conditions are given through
the average resistance and average conductance values, respectively, since the re-
spective configurations of the resistance values are in series and in parallel. We cast
this discussion in the language of percolation theory and then seek the appropriate
generalizations.

In one-dimensional systems, water (or current) must flow through every element
of the system. In the thermodynamic limit of infinite system size, this means that ev-
ery element of a distribution of resistance values must be present, with its occurrence
described by the relevant probability density function of resistance values, W(R).
The equivalent resistance of such a one-dimensional system is given by the series
combination of the individual resistances, which is the arithmetic sum of the resis-
tance values. The conductivity, whether hydraulic or electrical, must be inversely
proportional to the total resistance of the system, Rtot, which can be simply calcu-
lated as:

Rtot ∝ 〈R〉 =
∫ ∞

0
RW(R)dR or Rtot =

∑

i

Ri (5.55)

Thus,

Keff ∝
[∑

i

Ri

]−1

∝
[∑

i

K−1
i

]−1

(5.56)

If the individual elements are geometrically identical, then Keff is equal to the sec-
ond sum. Such a particular operation is often referred to as obtaining the harmonic
mean of the conductivities. For the two versions of Eq. (5.56) to be equivalent, it is
necessary that all individual elements have the same size and shape; otherwise the
only valid sum is over the resistances, Ri .

The opposite extreme to the combination of all the resistances in series, as in a
one-dimensional system, is the combination of all the resistances in parallel. In the
case of a parallel combination the total conductance is the sum of the individual
conductances, and the upscaled hydraulic conductivity, Keff, is then given through,

Keff ∝
[∑

i

K1
i

]1

(5.57)
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The same geometric restriction applies here, namely that the individual elements
all be congruent (have the same size and shape); otherwise it will be necessary to
include geometrical factors to transform the elements of the series to conductances.
When the factors are all identical, the approximation (Eq. (5.57)) becomes an equal-
ity. As a consequence of the validity of these two extremes, Scheibe and Yabusaki
[36] proposed the following formula

K ∝
[∑

i

Kz
i

]z

, −1 ≤ z ≤ 1 (5.58)

The problem with such power-law averaging [10, 11] is that it is conceptu-
ally incorrect. Comparison of percolation theoretical calculations with simulations
[5, 37] consistently demonstrates that the importance of individual resistances to
a medium’s effective resistance is not a monotonically increasing or decreasing
function of resistance. Rather, this importance is peaked. Specifically, the peak of
importance of resistance values occurs at the critical resistance, Rc. Smaller resis-
tances on the percolation path behave very much like shorts. Larger resistances are
avoided. These critical resistances control the field of potential drops in the entire
medium [5].

To a lowest order approximation (used as well by Balberg [2]) one can calculate
the hydraulic conductivity of a medium, to which critical path analysis is to be
applied, by including all the resistance values smaller than Rc on a one-dimensional
path, and ignoring the remainder of the resistance distribution. While this is not
completely accurate, it is an improvement over Eq. (5.58), and in more or less the
same spirit, as we will show.

The two cases, parallel and series combinations of resistances, correspond in crit-
ical path analysis to the percolation probabilities, pc = 0 and pc = 1, respectively
(Why?). The answer is because, in the first case, it is possible to find a path through
the medium which utilizes a vanishingly small part of the resistance distribution. In
the second case, it is impossible to find a path through the medium that excludes
any portion of the resistance distribution. The first case requires that each individual
resistor out of the entire distribution span the entire system, from one side to the
other, consistent with a parallel configuration of the resistors. Such a topology is
precisely what is imagined in pore scale models that rely on bundles of capillary
tube approximations. That is, out of a continuum of possible values, the bundle of
capillary tubes model chooses one end point, meaning that the conditions for which
it is valid never occur. The second case, meanwhile, is equivalent to a series config-
uration. The latter can be obtained in a 1D system, while the former is a necessary
result only of an infinite dimensional system (using the Vyssotsky et al. [44] for-
mula, Zpc = d(d − 1)).

What we present here is a procedure which maintains the fundamental perspec-
tive of critical path analysis, but also reduces to the proper results in the respective
limits pc = 0 and pc = 1.

Keff = 〈K〉
[∫ Kmax

Kc
W(K)K−1dK

K−1
max

]−1

(5.59)
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In this expression the probability density function, W(K), must be proportional to
the distribution of K values in bulk, but normalized so that

∫
W(K)dK between

the limits Kc and Kmax is 1. Further, we require the same geometric constraints as
in Eq. (5.56) and Eq. (5.57). Note that when pc = 0, Eq. (5.59) yields 〈K〉, since
Kc = Kmax, W(K) becomes a delta function, δ(K − Kmax), and the integral then
yields K−1

max, which cancels the denominator. But when pc = 1, the integral yields
the harmonic mean conductivity, while the denominator, (K−1

max)
−1 approximately

cancels 〈K〉, since for a wide distribution of hydraulic conductivity values, the arith-
metic mean is dominated by the largest K value.

It is important here that Eq. (5.59) essentially represents an averaging procedure
where the importance of K values is strongly peaked at the critical conductivity, Kc.
For pc = 0, this peak moves to Kmax, while for pc = 1, the peak moves to Kmin.
Thus, in the two extreme cases, Eq. (5.59) corresponds to the parallel and series
combinations, and the importance of individual conductivity values is either mono-
tonically increasing or monotonically decreasing. But in any other case (much more
realistic values of pc) this procedure yields an averaging procedure with importance
peaked at Kc. Note however that Eq. (5.59) performs rather disappointingly when it
is applied to a bimodal distribution [17, 18], appropriate for geological media com-
posed of sands and muds. In particular, when the upper mode of the distribution
(say sand fraction) is below the percolation threshold, Eq. (5.59) drastically under-
estimates K , although it otherwise does quite well. Further, Eq. (5.59) does generate
a rapid increase in K when the upper mode just exceeds the percolation threshold,
and percolation theoretical results are generally in accord with the sigmoidal shape
of log[K] vs. sand fraction [17, 18]). Power-law averaging performs most poorly,
never generating a point of inflection for any value z [17, 18].

The implication of this discussion is that the tendency of water (or electrical
current) to follow the path of least resistance means that such a path is configured in
parallel with other paths, whose resistances are much higher (and can be ignored),
while the resistances on such an optimal path are configured in series. Power-law
averaging [36] instead configures all the resistors equivalently, somewhere between
series and parallel. While power-law averaging can yield any value for Keff between
the two limits, and thus any value that experiment can develop, the logic of cause and
effect is missing and the exponent μ has neither predictive value nor experimental
significance.

5.6 Summary

Several examples of the application of critical path analysis were given. The most
difficult issue in these examples is the relationship between a critical, or rate-
limiting, conductance and the effective electrical or hydraulic conductivity. In the
first four calculations of the effective conductivity, we have chosen to apply a gen-
eral technique of Friedman and Pollak [12] in making this transition. This technique
develops the result in terms of the following length scales: (1) the separation of con-
trolling resistances along a path and (2) the separation of dominant paths. In the fifth
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calculation we developed an algorithmic procedure that offers greater simplicity, if
not greater accuracy.

In well-connected three-dimensional systems with local conductances being ex-
ponential functions of random variables, the typical separation of controlling resis-
tances appears not to be a critical function of percolation variables, but the opposite
is likely in two-dimensional systems. In three-dimensional systems, critical path
analysis requires an optimization of topological (current-carrying path separations)
and geometrical (resistance magnitude), but in two-dimensional systems a simpler
scaling argument becomes possible with the conductivity given merely by the crit-
ical conductance. If, however, local conductances are power functions of random
variables, as is often the case in porous media, then even in the three-dimensional
case it is difficult to separate the effects of topology and geometry, since both show
up in factors relating to length scales of similar magnitudes. Nevertheless the calcu-
lations of the hydraulic conductivity at full saturation with the highest degree of ac-
curacy are based on precisely this form of critical path analysis. Finally, it is possible
even in the kind of messier problem that is prevalent in porous media to formulate
conductivity ratios, which are given purely in terms of the geometry (though we will
find that this formulation will generally break down as the percolation threshold is
approached). When the relevant problem is formulated as a ratio of conductivities
at two different saturations, even three-dimensional problems are equally tractable.
But for the case of porous media we will find (next chapter) that not all conductivi-
ties are equivalent. Specifically, the electrical and thermal conductivity as functions
of saturation behave quite differently from the hydraulic conductivity. Nevertheless,
we also presented at the end of this chapter an upscaling result that should apply on
geologic scales equally to the electrical and to the hydraulic conductivities.

Problems

5.1 Show that integration of Eq. (5.4) to find Rc directly yields the same value as
Eq. (5.7) derived through the procedure of Eq. (5.5) and Eq. (5.6). This provides
the link between the probabilistic identity W(r)dr = W(R)dR, and substitution
of variables in integration.

5.2 Repeat the analysis of Eq. (5.35) through Eq. (5.41) for a log-normal distribu-
tion of pore radii. What additional assumptions must be made in order to com-
plete the analysis? Constrain the pore-size distributions for the log-normal and
the fractal case to be in some sense similar (define the similarity or equivalence)
and then compare the results for the hydraulic conductivity. Give graphical rep-
resentations of both the comparison between the two pore-size distributions,
and the two results for the hydraulic conductivity.

5.3 Repeat the analysis of Eq. (5.42) through Eq. (5.45) for a log-uniform distribu-
tion of pore radii. Compare your results with those for r-percolation.

5.4 Assume for simplicity that, as r-percolation involves an integral over a three-
dimensional spherical region of space, r–E percolation involves an integral
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over the analogue to a sphere in four-dimensional space. In such a picture write
an analogue to Eq. (5.16) for l. What length replaces d as the first factor? What
is the dependence of l on T ?

5.5 Find the temperature dependence of the correlation length for R = Ropt in r–E

percolation.
5.6 Show that variable-range hopping in d dimensions leads to the result

σ ∝ exp

[

−
(

T0

T

) 1
d+1

]

5.7 Let the density of states, N(E), be proportional to En. Show that VRH in d

dimensions now leads to

σ ∝ exp

[

−
(

T0

T

) n+1
n+d+1

]

5.8 Suppose that a VRH system is long in two of its dimensions [38], y, but short
in the third, x, i.e. y � x. Consider moreover that x may be shorter than the
correlation length found in Problem 5.5, and that a potential difference is set up
across one of the long axes of the system (longitudinal, rather than transverse,
conduction). In this case the conduction path cannot develop fully in the third
dimension, and conduction follows some intermediate dimensionality between
2 and 3. It is possible to constrain the conduction path to stay within the system
by the trick of allowing conduction to proceed through larger resistances, and
using a larger effective critical resistance, i.e.,

χ = χ0(p − pc)
−ν ≤ x

Let the exponent 2rij /a + Eij /kT = ξ . First solve this equation for the cor-
relation length for p, and then substitute this new value of p into a linearized
version of the following equation (relating ξ − ξc to p − pc):

ξ4
c

[
T

T0

]

= 1

to find

σ ∝ exp

[

−
(

T0

T

) 1
4
]

exp

[

−
(

T0

T

) 1
4
(

χ0

x

) 1
ν
]

A more accurate calculation would replace χ0 with the correlation length for the
dc conductivity in 3D VRH (from Problem 5.5), but this is sufficiently accurate
for the present purposes, and provides a preparation for material in Chap. 9.
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Chapter 6
Hydraulic and Electrical Conductivity:
Conductivity Exponents and Critical Path
Analysis

This chapter describes how to estimate hydraulic and electrical conductivity, primar-
ily as functions of saturation but, in a more limited fashion, also their dependence on
porosity. Electrokinetic currents, because of their very close relationship with elec-
trical and hydraulic conductivity, are discussed here too. Other properties, such as
air permeability, solute and gas diffusion, and thermal conductivity are discussed in
Chap. 7. The results are valid for generating sample scale properties from pore-scale
variability. The theoretical development and the parameters obtained are consistent
across the various properties, and the results predict experimentally measured val-
ues.

6.1 Background

For a long time a few results for the electrical and hydraulic conductivity have dom-
inated the literature. These results are known as Archie’s law [2] for the electri-
cal conductivity, and the Kozeny-Carman equation for the hydraulic conductivity.
Archie’s law accounts for both the saturation and the porosity dependence, while
the Kozeny [40]-Carman [14] equation is used only for saturated conditions. For
the saturation-dependence of the hydraulic conductivity, there is less conformity in
usage, but the Mualem [51, 52]-van Genuchten [71] type formulations have domi-
nated in soil physics and achieved influence outside that subject area. The focus of
this chapter is on the saturation dependence of these properties, but we find that one
can, under some conditions, infer the porosity dependence as well, so that there is
some point in addressing the suite of equations and properties together.

In turns out that both the Kozeny-Carman equation and Archie’s law have some
features in common with predictions from percolation theory. In particular, the idea
that the hydraulic and electrical conductivity could each be proportional to a power
of the porosity (or saturation) is consistent with percolation scaling on a contin-
uum; the propensity for these powers to equal 2 in Archie’s law is consistent with
universal scaling results from percolation theory. But the effects of the local con-
ductance distribution from the distribution of pore sizes must be properly accounted
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for; early work dating back to the 1970’s already suggests that the universal scaling
from percolation theory need not always be relevant.

What is novel in our method, and, in this book, new in this chapter, is the develop-
ment of tests to distinguish when geometry (the pore size distribution) is important
to the conductivity, and how to weight its influence relative to that of the topology
of the flow paths. This technique combines critical path analysis (chiefly geometry)
and percolation scaling (chiefly topology). As a result of such tests, we find that uni-
versal percolation scaling should explain a wide range of data; we can also predict
under what conditions non-universal results may apply, and what form they should
take, whether non-universal power laws or otherwise.

Our inquiries here into the electrical and hydraulic conductivities are based on
applying concepts from critical path analysis and percolation theory to (mostly) the
Rieu and Sposito truncated random fractal model (Rieu and Sposito [59]; hence-
forth RS). Critical path analysis isolates the effects of the pore-size distribution,
while percolation scaling identifies the effects of the fluid connectivity, which are
effectively assumed to override any special connectivity properties of the medium
itself. While the connectivity properties of the medium are important, it is ordinarily
possible to summarize their effects in a single parameter, the percolation threshold.
For a relatively wide range of conditions, we find that the saturation dependence of
the electrical conductivity follows universal scaling of percolation theory, but that
the conditions for an equivalent result for the hydraulic conductivity are much more
restrictive. Only when the saturation dependence of the conductivity (whether elec-
trical or hydraulic) follows universal scaling between the limits of zero and full sat-
uration, can one recover universal scaling for the porosity dependence. This appears
to be a relatively rare occurrence in the hydraulic conductivity, but a rather com-
mon result for the electrical conductivity. The explanation lies in the much stronger
pore-size dependence of local hydraulic, than electrical, conductances.

When the pore-size distribution dominates, which is usually true for the hy-
draulic conductivity, we argued in previous editions that critical path analysis would
normally deliver a saturation dependence that is a more complicated function, and
which could not be represented as a simple power law. This precludes the relevance
of either universal or non-universal scaling results. However, at low enough satu-
ration (whether electrical or hydraulic conductivity), we argued that the behavior
should be dominated by the topology of the connections of the water-filled pores,
allowing for universal scaling behavior (referred to a finite threshold moisture con-
tent). We also analyzed the limitations of this argument. But this discussion was
based on the RS model, and our expansion of the models treated in this third edition
requires a reevaluation of our results and a revision of the discussion. In fact it is
possible that non-universal scaling behavior should be expected more often than we
had suggested in earlier editions.

The RS model allows, in principle, a power-law dependence of pore sizes down
to zero pore radius. Under such conditions, it is known that one can derive non-
universal scaling of the conductivity. However, the RS model delivers porosity equal
to one under such conditions as well as an infinite specific surface ratio. Since these
limits are unphysical, earlier editions of this book, which relied exclusively on this
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model of the pore space, did not devote a great deal of attention to the question of
the relevance of non-universal behavior. We pointed out at the end of the chapter
(and still do) that the effects of film flow at low saturations would confound our pre-
dictions for universal scaling with a finite threshold. This conclusion is required be-
cause film continuity can be maintained effectively down to an arbitrarily low mois-
ture content associated with the presence of a few molecular thicknesses of water
on each particle. Now we can argue that such a water presence, ignoring the rough-
ness of the particles, should produce a non-universal scaling result proportional to
the cube of the absolute moisture content. This is not the only complication, how-
ever. The Tyler and Wheatcraft [70] fractal model effectively allows pore sizes in
the limit of zero radius with realistic values of the porosity and, possibly, no require-
ment that the specific surface area diverge. The Tyler and Wheatcraft [70] model and
the RS model are endpoints of a more generalized model, treated in Chap. 4, and
which is roughly equivalent to the pore-solid fractal model of Bird et al. [9]. Using
that model, critical path analysis yields non-universal scaling for either the electri-
cal or the hydraulic conductivity in the limit that the parameter β = 1. When we
fit observed water retention curves with this generalized model, this limiting value
of β turns up rather frequently. And in one case, the dependence of the hydraulic
conductivity on saturation, as inferred from the scaling of the typical solute arrival
time (Chap. 11), appears to be more or less in accord with this non-universal scaling
result.

Overall, however, we find that, especially for the saturation-dependence of the
electrical conductivity, experimental results are consistent with universal scaling,
as our analysis predicts. Further, old results from Thompson et al. [67] indicate a
strong clustering of the porosity dependence of the electrical conductivity around
universal scaling. In the following chapter we show that both the air permeability
and solute and gas diffusion are also consistent with universal scaling predictions
from percolation theory.

It is of general importance to consider the limitations of our methods, and in
what kinds of systems we might expect them to be incomplete. For example, one
can imagine scenarios in which Archie’s law follows universal scaling for satura-
tion dependence but not for porosity dependence, consistent with phenomenological
representations of Archie’s law that allow for different dependences of the electrical
conductivity on saturation and on porosity. An example of such a series of media
is described in Sahimi [63]; sequences of media formed by cementing concentric
chemical depositional layers around spherical particles (a model of diagenesis) can
generate dependences on porosity distinct from universal scaling. Models of bio-
clogging could generate inward growth of bacterial films towards the center of a
pore. Depending on the apportionment of bacteria within pores of different pore
radii, it may be possible to generate a wide range of effective porosity dependences
of the hydraulic conductivity. If this effect were independent of pore size, for exam-
ple, the analyses presented here could be applied with little modification, since the
pore that delivers the critical pore radius would remain the same, even if the radius
did not. However, we have not expanded our treatment of the models of the pore
space in this direction.
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We have greatly expanded the number of experiments considered. This has forced
us to address additional issues regarding potential failures of the assumption of
Poiseuille flow, for example, as well as alternate means of water transport. There
we have begun to address the issue of film flow, and its effects on the hydraulic
conductivity.

We also can identify complications from experiment. In particular, when anal-
ysis leads us to expect universal scaling from percolation theory, but observations
indicate otherwise, we find that factors other than non-universal exponents of per-
colation frequently influence experimental results. For example, we have seen evi-
dence for experimental issues such as contact resistance, non-zero conductivity of
the solid phase, misjudging the value of a critical moisture content, and dissolution
of precipitated ions; these issues complicate the analysis and may, if not accounted
for, appear to support non-universal exponents in the electrical conductivity. We an-
alyze nearly 50 data sets for electrical conduction or diffusion (and summarize prior
analysis of another 50 data sets), all of which appear consistent with universal scal-
ing. Some of these data sets (e.g., [2]) had been interpreted differently in the past to
support the relevance of non-universal exponents.

Since significant further evidence for the relevance of universal scaling emerges
from analyses of the saturation dependence of the air permeability and of diffusion
constants, both topics of the following chapter, we defer a final evaluation of the
merits of universal scaling until the end of the next chapter.

6.2 Hydraulic and Electrical Conductivities, and Electrokinetic
Coupling: Universal and Non-universal Exponents

The scaling difference between electrical and hydraulic conduction, though only a
matter of the specific power of a pore radius, produces a huge difference in measur-
able properties. We start by contrasting electrical and hydraulic conductivity, with
each expressed as a function of moisture content, and for completeness include elec-
trokinetic and film flow effects as well. The discussion assumes Poiseuille flow,
though some of the experimental evidence we discuss suggests that this assumption
may be violated.

From Chap. 5 we had that the hydraulic conductance of a (roughly cylindrical)
pore of radius r and length l filled with fluid of viscosity η is

gh ∝ r4

ηl
(6.1)

The electrical conductance of the same pore is

ge ∝ σb
r2

l
(6.2)

where σb is the electrical conductivity of the water or brine filling the pore; σb
is therefore proportional to the concentration of charge carriers. Equation (6.2) is
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equivalent to stating that the resistance of a homogeneous wire of resistivity ρ ≡
1/σ , length l, and cross-sectional area A is ρl/A, a result familiar from elementary
physics. Equation (6.2) implicitly assumes that conduction is uniform within a given
pore, and would be relevant for the thermal conductivity of the medium as well, if it
weren’t for the fact that the solid medium typically has a higher thermal conductivity
than the fluid-filled pore space.

Because electrokinetic effects (as opposed to thermal conduction) also relate
chiefly to the water-filled pore space, we include them in this discussion. In this
case the flux is only along the boundary of the pore, so that the total charge trans-
port is confined to a cylindrical shell of circumference 2πr and thickness �r , rather
than a cylinder of cross-sectional area πr2. Therefore the conductance gek (the co-
efficient of proportionality between electrokinetic current, J ek, and the gradient of
pore pressure) takes the form [35]

gek ∝ r

l
(6.3)

Similarly, for films of thickness �r , the conductance would take the form

gff ≈ �r2(r�r)/ l (6.4)

In finding the controlling conductance in an infinitely large system, critical path
analysis will yield the same critical radius rc for electrical as for the hydraulic con-
ductivity [22], and for that matter also for the electrokinetic current and film flow,
since in all these cases a pore’s conductance is a monotonically increasing function
of r . Using a network model on a cubic grid, Friedman and Seaton [22] showed that
the relationship between the saturated electrical conductivity σS and the saturated
hydraulic conductivity KS is KS ∝ r2

c σS. Extending the relationship to include an
electrokinetic conductance, gek would yield ge

c ∝ rcg
ek
c . The proportionality con-

stant r2
c between KS and σS is therefore system dependent rather than universal,

even when both properties are determined by critical path analysis. We will see that
the connection between the two properties is even less straightforward, and that
there is little hope of deriving a rigorously predictive relationship between the two
quantities—without knowing much more about the medium than one is likely to
know if one’s aim is simply to obtain KS from σS.

Consider next the implications of treating a self-similar medium. If a medium is
fractal, it is not possible to distinguish the size of a pore on the basis of its aspect
ratio l/r . More generally, while all pore shapes of a given size need not be identical,
self-similarity still requires that the distribution of pore shapes be independent of
pore radius. Thus self-similarity implies r ∝ l in the mean.

In a medium in which the pore space is self-similar, we can summarize the scaling
of various pore-scale conductances with r :

gh ∝ r3 (6.5)

ge ∝ r1 (6.6)

gek ∝ r0 (6.7)

gff ≈ r0�r3 (6.8)
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Of course the porous medium may be simulated using a network model with a
fixed grid, such that all pore lengths are identical even while the pore radii vary.
In such a case it would be necessary to increase by 1 the powers of r in Eqs. (6.5)
through (6.8), giving the original values of 4, 2, 1, and 1, respectively. The particular
results derived below would then no longer hold, but analogues to these results are
treated in the problem sets.

Assume the RS model as a case consistent with l ∝ r . Consider that if a pore
has radius r with probability W(r), it must have volume r3, making the chance
that a small volume chosen arbitrarily belongs to a pore of radius r proportional to
r3W(r). Thus, since W(r) ∝ r−1−Dp, we must have the probability of “landing on”
a pore of radius r be r3W(r) ∝ r2−Dp . Combine Eq. (6.5) and Eq. (6.6) with the
relationship

W(r)dr = W(g)dg (6.9)

as well as r3W(r) ∝ r2−Dp, and the results

W
(
gh) ∝ (

gh)− Dp
3 (6.10)

and

W
(
ge) ∝ (

ge)2−Dp (6.11)

follow. In Eq. (6.10) it is almost always true that 0 < Dp/3 < 1, while in Eq. (6.11)
−1 < 2 − Dp < 0 as long as 2 < Dp < 3, which is typically the case. Thus, under
usual circumstances, the distributions of both the electrical and hydraulic conduc-
tances are power laws with exponents −α such that 0 < α < 1. But Balberg [3]
determined that if

W(g) ∝ g−α 0 < α < 1 (6.12)

for a distribution that continued to g = 0, then the conductivity described by that
distribution must obey

σ ∝ (p − pc)
α

1−α (6.13)

Equations (6.10) and (6.11) give results that correspond to those treated by Balberg
[3] as generating non-universal exponents of percolation theory, except that, as we
will see, they cannot be extended to g = 0 as required for that derivation. In contrast,
the distribution of electrokinetic (as well as film flow) conductances follows the
form

W
(
gek) ∝ δ(g − g0) (6.14)

(where δ is the Dirac delta function): all conductances have the same value, which
we designate g0. For film flow, this conductance value is proportional to �r3. Since
each film has the same thickness, and since the total area of the pore boundaries
is essentially given in terms of the specific surface area, it is possible to relate the
specific water volume, θ , linearly to the individual film thicknesses, �r . This makes
each gff proportional to θ3.
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In a system with heterogeneous mineralogy, Eq. (6.14) would no longer hold for
electrokinetic currents, because the streaming potential (which we do not discuss;
see, e.g., [6]) would also vary. Similar arguments would hold in film flow. However,
even in a heterogeneous network there could be no correlation between saturation
and the conductance distribution, so arguments that the electrokinetic current (as a
function of saturation) is governed by non-universal exponents would still not apply.

A network in which all conductances have the same value cannot generate a
non-universal exponent for the saturation-dependence of the conductivity, unless,
as in film flow above, each individual conductance contains a prefactor with a non-
universal dependence on saturation. Further, application of critical path analysis
to such a network cannot yield a saturation dependence of the electrokinetic cur-
rent J ek, since the critical conductance value will have no dependence on saturation.
Thus the only saturation dependence available for J ek is topologically based, and
must be given by the universal scaling of percolation theory (also given in [66]).
When the pore size distribution is irrelevant to conductivity, the universal exponents
of percolation theory describe the behavior of the saturation dependence of the con-
ductivity over the full range of saturations and J ek must depend on saturation as

J ek ∝ (θ − θt)
μ (6.15)

Normalization for θ = φ, or for φ = 1 of such a property that depends only on sur-
face properties is subtler than we wish to address, so this concludes our discussion
of electrokinetic currents. However, we can still address the saturation dependence
of film flow: Factoring out θ3, common to each conductance, allows the total film
flow hydraulic conductivity to be written as proportional to θ3. This result has re-
cently been obtained by Wang et al. [73], with some evidence to indicate that it
corresponds to observations of the hydraulic conductivity under dry conditions.

From Chap. 5 the ratio of the (unsaturated) hydraulic conductivity K(θ) and its
value KS at saturation is

K(θ) = KS

[
(1 − φ) + (θ − θt)

1 − θt

] 3
3−Dp

(6.16)

This equation was developed in critical path analysis as the cube of the ratio of the
corresponding critical radii. In analogy with Eq. (6.16) for hydraulic conductivity,
we can write for electrical conductivity [28]

σ(θ) = σS

[
(1 − φ) + (θ − θt)

1 − θt

] 1
3−Dp

(6.17)

The only difference between the forms of Eqs. (6.16) and (6.17) is that the power
3/(3 − Dp) in Eq. (6.16) is replaced by 1/(3 − Dp) in Eq. (6.17). This is done be-
cause the power of r for hydraulic conductivity (3 in Eq. (6.5)) is replaced by a
different value in the electrical conductivity (1 in Eq. (6.6)). When both Eq. (6.16)
and Eq. (6.17) hold, the hydraulic conductivity is proportional to the electrical con-
ductivity to the third power.
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Combination of Eq. (6.16) with Eq. (4.24) for moisture content as a function of
hydraulic head h gives the following result for K(h):

K(h) = KS

[

1 − 1 − (hA
h

)3−Dp

1 − θt

] 3
3−Dp

(6.18)

In the case θt → 0, Eq. (6.18) reduces to K(h) = KS(hA/h)3 independent of pore-
size distribution. Usual soil physics treatments imply the dependence h−2. But for
θt > 0, K(h) in Eq. (6.16) follows an approximate rather than an exact power law,
and the approximate power is greater than 3. See the discussion following Eq. (6.21)
for further details.

6.2.1 Balberg Non-universality

Balberg [3] demonstrated explicitly that distributions such as Eq. (6.10) or
Eq. (6.11), if continued to g = 0 (which represents no mathematical problem, i.e.,
the distribution is normalizable), lead to non-universal exponents for conduction.
That is, the conductivity vanishes according to some non-universal power of the
difference between a volume fraction and its critical value. If we adapt Eq. (6.13),
derived using continuum variable p, to the case that the fractional volume is a water
content, we find

σ ∝ (θ − θt)
α

1−α (6.19)

Substituting the exponent from Eq. (6.10) [Eq. (6.11)] into Eq. (6.13) would yield
the non-universal exponent Dp/(3 − Dp)[(Dp − 2)/(3 − Dp)]. However, the dis-
tributions given in Eq. (6.10) and Eq. (6.11) are truncated, both at a maximum g

corresponding to rm, and, more importantly, at a minimum g corresponding to r0.
The cut-off at the minimum g is required by physical constraints, not mathematical
conditions: in the Rieu and Sposito (RS) model, a medium with r0 = 0 would have
porosity φ = 1, zero solid volume, and infinite solid surface area in a finite vol-
ume (see Chap. 8). Because these are clearly unphysical results, we do not expect
Balberg’s prediction of non-universal exponents to be observed in the saturation de-
pendence of hydraulic or electrical conductivity through water-filled pore space, at
least if the RS model is preferred. On the other hand, the Balberg derivation will
be seen below to be useful in the present analysis, because his results follow from
Eq. (6.20) and Eq. (6.21) below in the limit φ → 1. This provides a mathematical
check on the present results.

In this discussion we have identified the scaling of the bottleneck resistance as a
function of moisture content with the scaling of the conductivity. In order to clarify
the correspondence with the results of Balberg [3], we make the same assumption
that was made there—that conduction on these paths is basically one-dimensional—
then calculate the average resistance of the resulting paths. To do this, one integrates
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over the bulk resistance distribution cut off at g−1
c , with the result that 〈g−1〉−1 is

given in each case by g−α
c . Instead of Eq. (6.16) and Eq. (6.17), the results are [32]

K(θ) = KS

[
(1 − φ) + (θ − θt)

1 − θt

] Dp
3−Dp

(6.20)

and

σ(θ) = σS

[
(1 − φ) + (θ − θt)

1 − θt

]Dp−2
3−Dp

(6.21)

differing from Eq. (6.16) and Eq. (6.17) solely in the substitution of Dp for 3 in
the numerator of the exponent. While these exponents are exactly α/(1 − α), as
required by Balberg [3], the arguments of the powers in Eq. (6.20) and Eq. (6.21)
are not simply θ − θt, as in his result. While it is already clear that Eq. (6.20) and
Eq. (6.21) yield Eq. (6.19) (with p − pc → θ − θt) in the case φ = 1, we still need
to demonstrate under what range of moisture contents Eq. (6.20) and Eq. (6.21) are
generally valid, before we can apply the condition φ = 1.

Although Eq. (6.20) and Eq. (6.21) were derived to allow comparison with those
of Balberg [3], they may have significance beyond that comparison. For example,
derivation of Eq. (6.20) implies that Eq. (6.18) in the case θt = 0 would reduce
to the non-universal result K(h) ∝ h−Dp, rather than h−3. Note that the observed
scaling of K with h is usually according to a power between 2 and 3: typically closer
to 3 than to 2, but not to precisely either 2 or 3 (Sposito, personal communication,
2002). Furthermore, K(h) tends to drop more rapidly for coarser soils than for finer
soils [25]. Such a result cannot be understood in terms of Eq. (6.18), which has no
pore size information beyond hA. But if Dp tends to be larger for sandy soils than
for clayey soils [10], such a result is indicated, and is consistent with Eq. (6.20).
Without analyzing a large number of additional media, these comments need not
be conclusive to the typical physicist reading this passage, but they should have
considerable significance to the typical soil physicist. If these considerations are
indeed relevant, then the Balberg [3] treatment, which uses the average resistance
along the critical path rather than the largest resistance, is a significant refinement
to the simpler critical path treatment.

For typical values of the fractal dimensionality of soils (say 2.8; [74]), the dif-
ference between Dp and 3 in the numerator of the exponent (Eq. (6.16) versus
Eq. (6.20), and Eq. (6.17) versus Eq. (6.21)), while small, may be detectable. How-
ever, there is some theory-based uncertainty as to whether using Dp is really more
accurate than 3: as Mallory [47] pointed out, the distribution of resistances on the
backbone clusters differs from the bulk distribution in more ways than the simple ex-
istence of a cut-off at the critical value. Larger resistors are shorted more often than
smaller ones, so integration over the bulk distribution, even with the cut-off, is not
strictly justifiable. Our comparisons with experiment have thus far used Eq. (6.16)
rather than Eq. (6.20), and we continue to use that equation here for evaluation, but
we emphasize that the issue of which exponent is more appropriate and accurate
remains unresolved.



166 6 Hydraulic and Electrical Conductivity: Conductivity Exponents

In order to complete our comparison with Balberg’s [3] results, we need to dis-
cuss the relationship between critical path analysis and percolation scaling. This
analysis leads to inferences regarding the Kozeny-Carman phenomenology and
Archie’s law as well.

6.2.2 Transition from Critical Path Analysis to Percolation Scaling

Regardless of whether the exponent’s numerator contains 3 (Eqs. (6.16) and (6.17))
or Dp (Eqs. (6.20) and (6.21)), the critical path equations imply that when the mois-
ture content θ → θt, the conductivity (whether hydraulic or electrical) is governed
by the smallest pore in the system. But this contradicts percolation scaling, accord-
ing to which K and σ must both go to zero in the limit θ → θt, even if the smallest
pore r0 > 0. In fact, if r0 > 0, then one expects universal scaling to hold, and

K(θ)

K0
= σ(θ)

σ0
∝ (θ − θt)

μ (6.22)

with the constants K0 and σ0 having appropriate units and physical foundations. So
we must address the issue of the dependence of K(θ) and σ(θ) in the limit θ → θt,
first considering hydraulic conductivity.

When θ is near θt, Eq. (6.22), which results from topology and percolation scal-
ing, must replace Eq. (6.16), which describes K(θ) based on the size (geometry)
of the bottleneck pore. Denote by θxK the moisture content at that cross-over or
replacement point. The value of θxK can be determined [29] by setting equal the
two dependences of K(θ), and also setting equal their derivatives, at some moisture
content θ = θxK . The use of these two conditions, requiring continuity of both K

and dK/dθ , yields both θxK and the constant prefactor K0 in Eq. (6.22). Notice that
we must have θt ≤ θxK .

The practical consequence of the analysis for the cross-over moisture content
is that for any θ , the appropriate equation for K is the one that gives the larger
value of |dK/dθ |. That is, the form to choose is the one most sensitive to changes
in moisture content at the current moisture content. Equivalently, the less sensitive
dependence is set equal to a constant. This procedure also permits us to find K0,
the prefactor of the hydraulic conductivity in the range of moisture contents where
K is given by universal percolation scaling [29]. This is a valuable capability, as
earlier recognized by Berkowitz and Balberg [5]: “One might suggest that, since the
hydraulic conductivity can vary by orders of magnitude among rocks of the same
porosity, the coefficients of equality in the power law relationship may be of greater
significance than the critical exponent.”

For ease of reference, Eq. (6.22) will be referred to as percolation scaling of K ,
while Eq. (6.16), derived from critical path analysis, will be referred to as fractal
scaling. Although both ultimately derive from percolation theory, in Eq. (6.16) it is
the fractal characteristics, through the power-law pore-size distribution, which make
the dominant impact on K and show up in the exponent.
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The result from the above analysis for θxK is [30],

θxK = θt +
[

μ(1 − φ)

3
3−Dp

− μ

]

(6.23)

Note that if consistency with the Balberg result for non-universal scaling is required,
3/(3 − Dp) must be replaced by Dp/(3 − Dp). For μ = 2 and typical soil values
φ = 0.4 and Dp = 2.8 [74], Eq. (6.23) leads to θxK − θt ≈ 0.09, about 22 % of the
range of moisture contents. In the more complicated model related to the pore-solid-
fractal model, the only change to Eq. (6.23) is that 1 − φ is replaced by β − φ.

6.2.3 Comparison with Experiment

We begin with Hunt and Gee [33], who compared the above results with data from
the Hanford site, and continue with our recent [23] comparison to the much larger
UNSODA data set from the USDA Salinity Laboratory, Riverside, California [44].
In 2002 we used the theoretical development given here, while in 2012 we applied a
somewhat more complicated model related to the pore-solid fractal (PSF) model of
Bird et al. [9]. The Bird et al. model has an additional parameter β , corresponding
to its more complex partitioning of the space in the medium (described in greater
detail in Chap. 4), and allows the smallest pore radius to approach zero without
incurring φ → 1. Although our 2012 model is not precisely Bird et al.’s [9] PSF
model, the analytical results for the water-retention curve are identical to those of
the PSF model, and we will refer to it using this abbreviation. Also, like the PSF
model, it is consistent with the Rieu and Sposito [59] model treated here in the case
β = 1, while it is consistent with the Tyler and Wheatcraft [70] fractal model when
β = φ. In the (unphysical) limit φ → 1, all three models are indistinguishable. Be-
sides the much larger data set and the more general model, the 2012 analysis, for
which useful particle-size data were not available, simply fitted the PSF model wa-
ter retention predictions to experiment and used the extracted parameters to pre-
dict the hydraulic conductivity. In 2002, we generated the water retention curves as
well as the saturation dependence of the hydraulic conductivity from particle-size
data.

Figure 6.1 demonstrates an example of the predictive capability of the critical
path analysis-based techniques, including the relevance of the cross-over to univer-
sal scaling, for the values of Dp, φ, and θt from the McGee Ranch soil [32, 33], along
with experimentally measured values of K . Dp ≈ 2.81 was obtained via Eq. (3.16)
from porosity and particle size data taken from various places on the surface, while
θt was obtained by comparison with studies examining percolation scaling of the
diffusion constant [34]. KS was chosen as the largest measured K value. The solid
line is the theoretical prediction using the mean value of Dp; dashed lines represent
uncertainty in the measurement of Dp. Given that all the parameters were obtained
from measurements of other properties, Fig. 6.1 represents a zero-parameter pre-
diction. Note that the data for Fig. 6.1 [62] were obtained at different depths in the



168 6 Hydraulic and Electrical Conductivity: Conductivity Exponents

Fig. 6.1 The hydraulic conductivity of the McGee Ranch soil as a function of moisture content.
Data from [62]. The circles are the experimental values. The bold line is the combined prediction of
critical path analysis (Eq. (6.22)) and universal scaling near the percolation threshold (Eq. (6.16)).
The light line at for θ > 0.15 is Eq. (6.16), for θ < 0.15, Eq. (6.22). The dashed lines on either
side of the bold line represent the approximate uncertainty in the prediction due to the variability
(9 samples) in the measured values of r0 and rm and the consequent uncertainty in Dp. The critical
moisture content, 0.107, for percolation was obtained from the regression of Hanford site soils on
the Moldrup relationship for the threshold moisture content for diffusion (Chap. 7), and is shown
by the vertical line. KS was chosen to be the largest K value measured. The porosity was 0.444.
Note that the unsteady drainage (field) experiment did not attain moisture contents lower than
approximately θxK , where K begins to drop precipitously

column in a field experiment (unsteady drainage), and stop at a moisture content ap-
proximately equal to θxK . Lower moisture contents are associated with very small
values of K , and require much longer drainage times than attainable in experiment.
Thus the question of equilibration becomes very important at moisture contents be-
low θxK , a topic discussed in detail in Chap. 8.

Continuing, Fig. 6.2 shows predicted and observed K(θ) for a multi-modal pore-
size distribution, addressed analytically by assuming that each mode of the distri-
bution can be treated using the RS model. Using the soil particle size data, Hunt
and Gee [33] were able to find the appropriate values of Dp in each mode of the
distribution, meaning that the theoretical points in Fig. 6.2 again represent a zero-
parameter prediction. An interesting aspect of a multi-modal pore size distribution
is its effect on the representation of K(h). While K(h) tends to follow a power law
in hydraulic head (either h−3 or h−Dp) in the case of a simple power law pore-size
distribution (with a positive curvature on a log[K] vs. h plot), when the distribution
is bimodal this universal tendency is lost. Consider a case when the largest water-
filled pore is in the upper mode of the pore-size distribution (say, with dimension
Du), but the critical pore radius is in the lower mode (say, Dl). Then the product of
the two powers 3 − Du and 3/(3 − Dl), relevant for θt 
 1, will not be 3, because
the two values of D are not the same. (Use of the Balberg technique is a bit more
complex here, but does not qualitatively change the conclusions.) If the lower mode
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Fig. 6.2 The hydraulic
conductivity of the North
Caisson soil. The North
Caisson soil had a
multi-modal particle-size
distribution. Like the McGee
Ranch soil the theoretical
comparison involves no
uncertain parameters. Data
from [62]

of the distribution has a very small associated porosity, such as a small silt fraction
in a sandy soil, then the usual fractal analysis will generate a value of Dl very close
to 3, and K(h) will have a cusp associated with a cross-over to a much more rapid
drop in K with increasing h. Experimental data near the cusp may appear to have a
negative curvature on the typical plot because of the experimental uncertainty, but it
is actually positively curved everywhere except at the cross-over. Interestingly, the
variability in K values increases rapidly below the cross-over, since there is typi-
cally considerable relative variability in the concentration of fine soil particles when
the medium is rather coarse. So if (for example) silt and clay compose on average
5 % of a given soil, one is likely to encounter samples with concentrations from
2 % to 10 %; this variability can easily change 1/(3 − Dl) by a factor of 50 to 15,
respectively [33].

In Ghanbarian-Alavijeh and Hunt [23], the water retention curve for the PSF
model,

θ = φ − β

[

1 −
(

hmin

h

)3−D]

, hmin < h < hmax (6.24)

was fitted to experimental data from the UNSODA data base to find the parame-
ters D and β , while θt was identified with θ(hmax), effectively the lowest moisture
content reached. These parameters were then inserted into the derived result for the
hydraulic conductivity [23],

K(θ)

KS
=

[
β − φ + θ − θt

β − θt

] D
3−D

θ > θxh, (6.25)

where

θxh = θt +
[
μ(β − φ)

D
3−D

− μ

]

(6.26)

or Eq. (6.22) and compared with experiments (Fig. 6.3) on 109 soils (1014 data
points). This figure is plotted in the way usual in soil physics publications, with the
observed values on the horizontal axis and the predicted ones on the vertical. Note
that the standard procedure in soil physics is to use the van Genuchten formulation
for the unsaturated hydraulic conductivity (Eq. (3.18)), shown in the second panel,
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Fig. 6.3 Comparison of
critical path analysis (CPA)
based calculation of the
saturation dependence of K

with two other methods [23].
First panel, CPA; second
panel, Mualem-van
Genuchten, third panel
Mualem method applied to
PSF model. Two important
results emerge: (1) CPA
works much better at higher
saturations, (2) CPA
underestimates K by the
greatest amount at low
saturations. The latter result is
due partly to the fact that in
percolation theoretical
methods there is no
adjustable parameter in the
“tortuosity-connectivity”
factor, and that the added
flexibility in the Mualem
method is serving to hide its
defects (Hunt et al. [36]—
“What is wrong with soil
physics?”)
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while the third panel shows what would happen if the Mualem-van Genuchten pro-
cedure were applied to the PSF model. At higher moisture contents (and higher
observed K values), application of critical path analysis to the PSF clearly per-
forms best. This is shown by comparing the values of Akaike’s information criterion
(AIC), which are −1273 (critical path) −478 (van Genuchten), and −357 (Mualem
van Genuchten applied to PSF). Larger negative AIC values indicate more accurate
predictions.

All methods underestimate K at small moisture contents, ours by the most, at
least on the average. It is relevant, however, that hydraulic conductivity values
smaller than about 10−9 cm/s (10−4 cm/day) are simply not measured. This par-
ticular value corresponds to less than an atomic distance of transport in a second; at
such low water transport rates it is less than clear that equilibrium moisture contents
have been reached, nor that Poiseuille flow in water-filled pores has any relevance.
Thus applying any of the usual formulations for the hydraulic conductivity under
conditions that they predict such low values of K is probably not supported. Sim-
ply “chopping off” the graphs horizontally at 10−4 cm/day allows the critical path
analysis prediction to appear at its best.

One reason that Mualem-van Genuchten treatments lead to a smaller underes-
timation of K at low moisture contents is their use of an inappropriate tortuosity-
connectivity correction factor whose exponent is too small, i.e., 1/2 instead of 2.
The fact that such small values of this exponent (including negative values when
used as an adjustable parameter, which would imply vanishing path lengths!)
work so well is indicative of systematic problems in all three formulations, most
likely the neglect of alternative flow mechanisms. We have not yet checked
whether we can eliminate the problems at low moisture contents by consider-
ing film flow contributions to the hydraulic conductivity, as claimed by Wang
et al. [73]. Given that the cubic dependence of film flow conductivity on mois-
ture content derived here is the same as in Wang et al. [73], it seems likely, how-
ever.

There are other important physical considerations, however. The most obvious
is that it is known that the WRC does not always provide a reliable estimate of the
pore-size distribution, as discussed in Chap. 3. Comparison with the experimental
WRC sometimes appears to overestimate the parameter D (2.932 instead of 2.885)
or underestimate β (0.3 instead of 0.315), as shown in Figs. 6.4 and 6.5, leading to
significant underestimation of the hydraulic conductivity. Consider that in the two
cases shown, errors of 2 % in D or 5 % in β can lead to errors of orders of magnitude
in the conductivity. If our methods perform better than existing methods in spite of
such sensitivity, we argue that the weak link is the inference that one can obtain
the conductance distribution (i.e., the pore size distribution) from the WRC. More
broadly, the accuracy of our theoretical calculations is such that it helps expose
weaknesses in inferences regarding the pore space.

We have also conducted a more in-depth study [23] on 8 UNSODA systems
included in Fig. 6.3, for which the WRC exhibited a pronounced cross-over in slope.
Our goal was to check whether the agreement between theory and experiment could
be improved if we allowed two separate fractal regimes in our model. The details
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Fig. 6.4 Demonstration of
the high sensitivity of
CPA-based calculations to
parameters extracted from the
WRC. Here a slight error
(2 %) in the determination of
D leads to a two order of
magnitude error in K at
S ≈ 0.5

Fig. 6.5 Demonstration of
high sensitivity of K as
determined by CPA to the
parameter β in the PSF
model. An error of 5 % leads
to an underestimation of K

by one and a half orders of
magnitude at S ≈ 0.3
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of the derivation are left to the Appendix; the process is time-consuming, but not
difficult. We emphasize one point from this study: the fact that the observed change
in slope occurred at the same moisture content in both the WRC and the hydraulic
conductivity indicates that the relevant critical volume fraction is zero, at least for θ

in the upper mode of the distribution.
To our surprise, we could not confirm that the more complicated model led to

superior predictions. Consider Fig. 6.6, which compares the predictions derived
from the monomodal and bimodal treatments with experiment. Qualitatively, our
predictions for K(θ) matched the shape of the observed results better, but quantita-
tive comparison did not hold up well. In particular, we typically predicted a much
steeper reduction in K with diminishing moisture content than was actually ob-
served.

In order to understand the discrepancy between theory and experiment, we in-
vestigated first the possibility that the fits to the WRC did not return the appropri-
ate value of the fractal dimensionality. Thus we fitted Eq. (6.52) to the measured
unsaturated hydraulic conductivity curves and determined D1 and D2. Figure 6.7
shows the fitted unsaturated conductivity model and the model capability for all
soil samples. Clearly it is possible to fit both K and the WRC, but not with the
same D values. The comparison of calculated fractal dimension of the first and sec-
ond regimes (D1, D2) using the WRC and unsaturated hydraulic conductivity data
given in Table 6.1 returned relative error values less than 4 %. Although the relative
error values are small, Fig. 6.6 shows that a small discrepancy in fractal dimension
may lead to even 8 orders of magnitude difference in the hydraulic conductivity at
very low water contents (see samples 4033 and 4681). These results are generally
consistent with those obtained in the monomodal case above, though the sensitivity
to discrepancies in D is even greater. High sensitivity to model parameters might
be regarded as a drawback, but it also has an advantage: it makes it possible to
distinguish between the efficacies of different means to extract parameters from ex-
perimental data, by accentuating discrepancies between prediction and experiment.
In particular, small changes in the value of D, if the value of D is near three, are
consistent with large changes in a pore-size distribution.

Several possible explanations for the discrepancy must be considered.
In Chap. 8 we discuss the complication that at lower moisture contents a rapid

drop in K can make it difficult to remove water from the medium, forcing tension
values higher, and thus attributing the water remaining to smaller pores. This means
that non-equilibrium conditions could confound our test, particularly at low mois-
ture contents, where the problem appears most acute. The discrepancies might also
be due to a failure of some common assumptions discussed in Chap. 3, e.g., of the
existence of cylindrical soil pores that are perfectly wetting (ideal contact angle) in
the Young-Laplace equation. In addition, changes in shapes of pores with diminish-
ing pore size (due to changes in mineralogy) can lead to the relevance of different
pore radii to different physical properties—a mean radius to water volume, but a
bottleneck radius to flow, for example.

One possibility that deserves special attention is that Poiseuille’s law may not
always be valid in natural porous media. Under the condition that the threshold wa-
ter content is zero (as appears by our analysis to be appropriate for each of these



174 6 Hydraulic and Electrical Conductivity: Conductivity Exponents

Fig. 6.6 Demonstration that parameters extracted from the WRC in the bimodal pore-size dis-
tribution frequently lead to severely inaccurate predictions of K , even though the shape of the
predicted K(S) curve qualitatively resembles that of the experimental data
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Fig. 6.6 (Continued)

soils), the saturation-dependence of the critical pore radius should track exactly the
saturation dependence of the largest water-filled pore. This allows a rather precise
comparison of the theoretical scaling of hydraulic conductivity with pore radius,
if the WRC is a reliable representation of the pore space. As seen in Fig. 6.6, the
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Fig. 6.7 Demonstration that only slight changes in the parameters extracted from the WRC could
lead to K(S) curves that match experiment very well. See discussion in text

pore size (tension head) ranges between 2 to 4 orders of magnitude, while the hy-
draulic conductivity typically changes by 3 to 6 orders in the same range of water
content. But Poiseuille’s law for self-similar fractal porous media makes K(θ) ∝ r3

[23, 26], implying that if pore sizes change between 2 and 4 orders of magnitude,
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Table 6.1 Values of fractal dimensionality in bimodal distribution as obtained by comparison from
WRC and K(θ), respectively

Soil
code

Water
retention
model

Unsaturated
hydraulic
conductivity

Relative
error
(%)

Water
retention
model

Unsaturated
hydraulic
conductivity

Relative
error
(%)

D1 D1 D2 D2

2530 2.900 2.935 1.2 2.964 2.993 1.0

3380 2.962 2.941 −0.7 2.935 2.875 −2.1

3390 2.958 2.932 −0.9 2.928 2.908 −0.7

3392 2.983 2.957 −0.9 2.958 2.921 −1.3

4033 2.986 2.968 −0.6 2.953 2.862 −3.2

4172 2.981 2.974 −0.2 2.925 2.825 −3.5

4680 2.990 2.989 0.0 2.948 2.880 −2.4

4681 2.989 2.982 −0.2 2.950 2.840 −3.9

the hydraulic conductivity should change between 6 and 12 orders, if the same ra-
dius r is relevant to both properties. Table 6.1 records the logarithms of the ratios
of the largest to smallest pore sizes as well as the largest to smallest K(θ) values in
each regime for each soil. We expect that the logarithms in columns 3 and 5 should
be exactly three times those of columns 2 and 4. For non-zero values of θt this ratio
can be different from 3. Note that both the Mualem-van Genuchten [71] and Burdine
[12] formulations ultimately appeal to Miller-Miller similitude [49] and would be
consistent with the power of 2, again in the case that a single value for a character-
istic pore radius characterizes both flow and water retention. However, influences of
both pore roughness and shape can confound this inference, and the actual relation-
ship between the two scaling exponents depends on the means chosen to generate
the representative pore radii. For flow the most important radius is a bottleneck in
a plane perpendicular to the flow, whereas for water retention, a mean minimum
radius is more nearly characteristic.

If pores could be considered self-similar, one would have a basis for asserting
that these two different radii would at least have the same dependence on mean
pore volume. But if pore shapes are irregular, there is no a priori reason to assume
that all cross-sections will scale identically with changes in pore size. As a result,
systematic pore shape changes with size would contradict our assumption of self-
similarity. In fact, the data analyzed here imply that the ratio of the two scaling
exponents is typically less than 2. Powers significantly greater than 2 would indicate
the relevance of r3 scaling of K , whereas powers less than 2 suggest the relevance of
r2 scaling to the hydraulic conductivity for θt = 0. The result, that 3 of the 16 cases
yield a value less than 2, is actually rather ambiguous, although at first sight would
seem to imply that r2 scaling of K is more likely. In this context we mention the
results of Priesack and Durner [56], who found that the exponent 3 may work much
better than 2. And the comparisons in Fig. 6.3 indicated that our entire theoretical
framework, including the exponent of 3, was quite accurate. In any case, reflection
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on the results summarized here leads to the conclusion that assumption of Poiseuille
flow scaling may not always be justified.

6.2.4 Cross-over Moisture Content for the Electrical Conductivity

Repeating for the electrical conductivity the analysis that led to the hydraulic con-
ductivity cross-over θxK from fractal to percolation scaling yields [31]

θxσ = θt +
[
μ(1 − φ)

1
3−D

− μ

]

(6.27)

(or, using Balberg’s approach, (Dp − 2)/(3 − Dp) rather than 1/(3 − Dp) in the de-
nominator). Moreover, if the pore-solid fractal approach is used, Eq. (6.27) should
be modified by replacing 1 − φ with β − φ. If the same values for θt = 0.04, μ = 2,
Dp = 2.8, and φ = 0.4 are substituted into Eq. (6.27) as into Eq. (6.23), one finds
θxσ − θt ≈ 0.4 for the electrical conductivity, rather than the value 0.09 found for the
hydraulic conductivity. That is, in the case of electrical conductivity, it is percolation
scaling which dominates over the entire range of water contents. Thus the saturation
dependence of the electrical conductivity, in contrast to that of the hydraulic con-
ductivity, may to a good approximation be written in the form of percolation scaling
all the way to full saturation where θ = φ [31]:

σ = σ0(φ − θt)
μ (6.28)

K at saturation is typically determined through rc, but σ is not. When K at
saturation contains information from a significant portion of the distribution of pore
sizes, but σ at saturation is independent of the pore size distribution, there is no
possibility to infer the hydraulic conductivity from the electrical conductivity.

Further, Eq. (6.28), in its simplicity, should recall Archie’s law, in which the
conductivity is written as a power of the porosity.

6.2.5 Return to Balberg Non-universality

Equations (6.20) through (6.22) allow us to set a limit on the applicability of Bal-
berg’s results for non-universal scaling. Consider the limit r0 → 0, i.e. that fractal
fragmentation has proceeded indefinitely (and the limit that the power law of the
conductance distribution continues to zero conductance). From Eq. (4.19) it is seen
that φ → 1. If φ = 1, Eq. (6.20) yields

K = KS

(
θ − θt

φ − θt

) Dp
3−Dp

(6.29)
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and Eq. (6.21) yields

σ = σS

(
θ − θt

φ − θt

)Dp−2
3−Dp

(6.30)

Further, Eq. (6.26) and Eq. (6.27) both yield

θx = θt (6.31)

Thus in the limit r0 → 0, the percolation scaling regime disappears, while the fractal
scaling regime develops a dependence on the moisture content (θ − θt) to a power,
for which the value of the exponent is related to the specific characteristics of the
fractal structure, and is thus non-universal [32]. The predicted powers are in exact
agreement with the results of Balberg if the average pathway resistance (rather than
the critical resistance) is used. In a formal sense, extending the Rieu and Sposito
fractal pore space model to pores of zero radius is consistent with continuing the
power law conductance distribution to zero conductance, which allows direct com-
parison of Eq. (6.29) and Eq. (6.30) with results of Balberg [3]. While Eq. (6.29)
and Eq. (6.30) predict that the non-universal behavior is valid for the entire range
of (conducting) moisture contents, i.e., θt < θ < φ, the universal contribution to
the power μ should also be added on at least in the vicinity of θt. Although we
have been treating universal scaling effects separately, in the limit φ = 1 the non-
universal scaling results dominate over the entire range of moisture contents, and
the additional contribution from universal scaling (μ = 2) may simply be added
on in the vicinity of the percolation threshold at θt. Note that for typical values of
Dp ≈ 2.8 in soils [74], the non-universal contributions to the power of Eq. (6.18)
and Eq. (6.19) are 14 and 4 respectively, i.e., much larger than 2. However, such
soils also typically have φ ≈ 0.4, and the argument of the power, (1 − φ) + θ − θt
then becomes approximately 0.6 + θ − θt. Such a function does not present as a
power law when graphed logarithmically.

6.2.6 Inferences on Porosity Dependences at Full Saturation:
Archie’s Law

The equation for the crossover moisture content for electrical conductivity,
Eq. (6.27), also allows further discussion of the electrical conductivity under sat-
urated conditions. It has been shown [30] that for natural media with insignificant
clay content, θt = pcφ, with pc a numerical constant independent of porosity. While
that derivation was motivated by theory, experimental data discussed there and in
many sections of this book provide additional confirmation. The basis for this pro-
portionality is easily understood in terms of a network of identical tubes: when a
fraction pc of the tubes is filled with water, the water-filled tubes percolate and the
moisture content is pcφ. This result can be generalized heuristically to an arbitrary
network with unknown pc. Such an argument is very much in the spirit of the first
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continuum percolation calculation of a critical volume fraction [64]. Combining this
proportionality with the experimentally obtained approximation pc ≈ 0.1 (further
discussion in Chap. 8), Eq. (6.28) may be rewritten [28] as

σ ∝ (φ − 0.1φ)μ = (0.9)μφμ (6.32)

Equation (6.32) is in the form of Archie’s law, and the result implies that the
observed power μ of the porosity should be 1.3 in 2D systems, and 2.0 in 3D.
Berkowitz and Balberg [5] suggested that validity of Archie’s law might result from
a critical moisture content that is zero, but did not mention the possibility that it
could also arise as a consequence of a proportionality of θt to φ. In fact we find
experimental evidence for both cases.

Although we do not expect that non-universal scaling will commonly apply to
the saturation dependence of conduction properties, there is nevertheless a possible
relevance of non-universal scaling to the porosity-dependence of the conductivity
(hydraulic or electrical) of saturated media. Such a topic relates to a wider range of
models of porous media than those we have concentrated on so far, including diage-
nesis. Non-universal exponents can, however, also result from pore-size distribution
effects, and may also implied by inappropriate analysis of experimental data.

Diagenesis is a physico-chemical process by which rock is altered at the grain
scale. For example, after burial, sediments may be exposed to thermal, chemical,
and pressure gradients that drive dissolution and precipitation of minerals. One can
envision a precipitation process by which sand grains grow concentrically, except
where they are already in contact with other grains. Such simplified models of di-
agenesis are discussed by Sahimi [63], and bear some resemblance to the Swiss
cheese and cannonball rock models for generation of non-universal exponents of
conduction. Certainly the progression to systems with smaller porosity is geometri-
cally distinct from e.g. drying of a fractal medium. In the former case, pore shapes
change continuously as the particles dilate, but in the latter, pore shapes must be in-
dependent of pore size; thus in the latter case both the largest water-filled pore and
the critical pore radius have shapes independent of moisture content, and both the
connectivity of the water-filled medium and the sizes of the water-filled pores (but
not the porosity) change with saturation. In diagenesis, however, as the pore sizes
are reduced, the connectivity of the medium remains constant (at early stages), but
the porosity and geometry change.

An important aspect of models that account for diagenesis is that they allow
different dependencies of the electrical conductivity on saturation and on porosity.
Because the pore necks may diminish rapidly with diminishing porosity, it becomes
possible to develop a non-universal dependence of the conductivity on porosity. This
allows a more general phenomenological representation of Archie’s law:

σ = σ0(S − Sc)
μφn (6.33)

with μ and n being different powers. We still expect μ to be 1.3 in 2D and 2.0
in 3D. However, n could respond to different influences, and variation in values
of n could have different interpretations. What many models of diagenesis have
in common (and also with the models of Feng et al. [20]) are (1) reliance on a
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Table 6.2 Archie’s law
porosity exponents from 2D
simulations [42]

System m

Random 1.22

Random 1.21

Triangle grains 1.26

Triangle pores 1.35

Diamond grains 1.24

Diamond pores 1.38

specific pore geometry, and (2) dependence of the relevant pore radii on porosity.
While this research direction is not incompatible with percolation theory (indeed,
many of its papers have been developed within the framework of percolation theory
and examination of non-universal exponents), it is not a necessary development of
percolation theory. An extensive literature exists on this subject, but because we
have often found that more mundane explanations exist for results that at first glance
might appear to imply non-universal exponents, we will not explore the literature on
diagenesis. For a good early review on diagenesis, the reader is referred to Sahimi
[63]. But we will continue using μ for both powers (and μ∗ for, e.g., pore-size
induced deviations from 2) as well as the logical development of this subsection.

6.2.7 Universal Exponents Masquerading as Non-universal

Regarding the porosity dependence of electrical conductivity, we find a great deal
of evidence to support the relevance of universal exponents of percolation theory.
For simulations of 2D conduction, Kuentz [42] effectively found μ = 1.28 ± 0.07
(Table 6.2), while experiments on 3D systems compiled by Krohn and Thompson
(1986) yield μ = 1.86 ± 0.19. Thompson et al. [67] give more than 40 values (Ta-
ble 6.3), also with μ around 1.8. Balberg [3] and Krohn and Thompson [41] have
two different perspectives on the wider range of μ values reported in the litera-
ture at that time; by constraining their results to systems that were consistent with
each other, Krohn and Thompson [41] produced a much smaller variation in μ val-
ues. Nevertheless, the measured porosity exponent in Archie’s law need not be pre-
cisely 2.0. We have already mentioned the potential relevance of diagenesis to se-
ries of related rocks with decreasing porosity. There exist also possible influences
of pore-size variability. Analysis may be confounded by incorrect estimations of a
relevant critical volume fraction, in the case that θt is not zero. We will later see that
such effects can be detected already in the saturation dependence of σ .

While the effects of connectivity and tortuosity (represented by percolation scal-
ing) appear to have the dominant effect on μ for electrical conductivity, the pore size
distribution may introduce some variability. In particular, if θxσ < φ (the cross-over
for the electrical conductivity is less than the porosity), then the pore size distri-
bution will modify somewhat the value of μ expected from experiment. In such a
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Table 6.3 Archie’s law porosity exponents from 3D rocks (mainly sandstones, from [67]). The
minimum l value was a theoretical estimation of Thompson et al. [67], who determined the maxi-
mum l from mercury porosimetry. The Dp value calculated for the pore space is from Eq. (2.16)

Price river (depth) D calculated Porosity Min l Max l m

67.5 2.975881 0.0828 0.02 0.72 1.78

93.8 2.975627 0.1265 0.02 5.14 1.81

93.2 2.975393 0.116 0.02 3 1.77

111.3 2.977919 0.1165 0.02 5.46 1.84

115 2.97452 0.1485 0.02 10.99 1.83

117 2.972552 0.1586 0.02 10.8 1.94

122.6 0.1282 0.02 1.84

125.4 2.976145 0.1192 0.02 4.09 1.87

128.1 2.977859 0.1275 0.02 9.47 1.88

130.3 2.974817 0.1095 0.02 2 1.85

132 2.974178 0.1242 0.02 3.4 1.9

137.3 2.974131 0.12 0.02 2.8 1.89

139.9 2.976272 0.1196 0.02 4.29 1.88

148.4 2.973592 0.1247 0.02 3.1 1.89

160.2 2.979283 0.1071 0.02 4.74 1.85

161.7 2.974569 0.1517 0.02 12.9 1.66

164.3 2.973942 0.1508 0.02 10.6 1.49

169.3 2.975546 0.1427 0.02 10.85 1.84

178.4 2.97544 0.1287 0.02 5.46 1.81

178.2 2.978037 0.1056 0.02 3.22 1.79

178.1 2.978725 0.0991 0.02 2.7 1.74

183.4 2.972752 0.1223 0.02 2.4 1.92

181.8 2.964996 0.123 0.02 0.85 1.88

189.1 2.974282 0.0922 0.02 0.86 1.77

197.1 2.971668 0.1044 0.02 0.98 1.77

199.7 2.979947 0.0848 0.02 1.66 1.78

203.8 2.977885 0.0656 0.02 0.43 1.69

210 2.981212 0.0359 0.02 0.14 1.57

224.8 2.971516 0.0751 0.02 0.31 1.78

233.1 2.972501 0.0726 0.02 0.31 1.79

265.8 2.978607 0.0526 0.02 0.25 1.77

607.3 2.97957 0.0943 0.02 2.55 1.81

626.2 2.984087 0.0691 0.02 1.8 1.72

637.8 2.984759 0.0658 0.02 1.74 2.24

652.9 2.981554 0.068 0.02 0.91 1.81

652.9 2.986981 0.042 0.02 0.54 1.66
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Table 6.3 (Continued)

Price river (depth) D calculated Porosity Min l Max l m

Boise Table 1 2.948788 0.35 0.02 90 2.12

Boise Marsing 1 2.961246 0.239 0.02 23 2.1

Boise Silver 1 2.98126 0.097 0.02 4.63 2.37

Berea 2.96568 0.205 0.02 16 1.76

Navajo 2.973338 0.178 0.02 31.18 1.71

Coconino 2.975293 0.099 0.02 1.36 1.86

Nugget 2.981648 0.109 0.02 10.77 1.87

St Peters 2.983855 0.093 0.02 8.45 1.73

Tennessee 2.978262 0.062 0.02 0.38 1.67

Red Navajo 2.963027 0.23 0.02 23.5 1.8

Layered Navajo 2.964098 0.2295 0.02 28.5 1.76

White Navajo 2.96259 0.2676 0.02 82.5 1.5

Carmel 2.969541 0.1161 0.02 1.15 1.66

Austin Chalk 2.934058 0.2881 0.02 3.46 2.22

case, the electrical conductivity at saturation should be larger than the value pre-
dicted from Eq. (6.20) by a factor F :

F =
[

1 −
(

φ − θxσ

φ − θt

)]μ[
1

1 − (
φ−θxσ

1−θt
)

]Dp−2
3−Dp

(6.34)

Because F ≥ 1, the saturation exponent can only increase. One might think that
representing the electrical conductivity as a power of the porosity would thus also
always yield a power μ∗ ≥ 2 in a fully 3D medium. Accordingly, one might then
also assume that since the exponent (Dp − 2)/(3 −Dp) for the electrical conductiv-
ity would be replaced by Dp/(3 − Dp) for the hydraulic conductivity, approximate
powers for K should tend to be larger than for the electrical conductivity. These
conclusions cannot be generally confirmed, however, since the actual result for the
power of the porosity depends on the precise sequence of media considered. The
value of a particular model is that one can directly analyze different sequences of
media.

Consider: If one holds the ratio rm/r0 constant while changing the porosity, then
Dp is a diminishing function of the porosity, making high-porosity media more
nearly commensurate with universal scaling than lower-porosity media, and thus
tending to produce a porosity exponent less than 2, not greater. If, on the other hand,
one holds Dp constant (forcing an increase in rm/r0 with increasing φ), then there
is a tendency for an effective μ∗ to exceed 2 and to be larger for larger values of
Dp. These tendencies can be shown graphically as well (similarly to Fig. 6.11). In
this case larger values of Dp correspond to larger disorder (larger ratio rm/r0). For
example, for φ = 0.4, the effective (and approximate) μ∗ rises rapidly from 2.3 to
8.3 as Dp increases from 2.9 to 2.97.
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It would be useful to make a comparison with experimental data to make further
tests of the present concepts. Because of the tendency for the exponents to be clus-
tered near μ = 2, the best published data set for such comparison might appear to
be that of Thompson et al. [67]. But in order to make a comparison with the data
compiled by Thompson et al. [67], it would be necessary to use values for Dp cal-
culated from Eq. (4.19), in contradiction to the result used by Thompson et al. [67]:
Eq. (4.20). Such a calculation is rendered unreliable since Thompson et al. [67] did
not actually measure r0; rather they assumed that r0 was the same for all of their me-
dia. Because the comparison (presented in the first edition of this book) was more
suggestive than conclusive, and because in the meantime we have obtained many
additional data sets, we omit from the present edition the investigation of such vari-
ability of μ∗ as may result from pore size distributions, noting only that the typically
observed discrepancies of 10–15 % would not be unusual.

We now pose the question: which porous media have the appropriate structure
to make a simple scaling result like Eq. (6.22) a valid predictor of the hydraulic
or electrical conductivity under conditions of full saturation? Models for the hy-
draulic conductivity along these lines are known as Kozeny-Carman, just as they
are known as Archie’s law for the electrical conductivity. The analysis will be ap-
propriate for porous media which are well described by fractal models, but it may
be approximately valid for other media to the extent that they can be approximated
by the fractal model. Also it is assumed that the conduction in these systems is 3D;
a simple alteration extends the derivation to 2D.

6.2.8 Regions of Applicability

Of the three parameters (rm/r0, Dp, and φ) which describe a fractal pore-space in
the RS model, only two are independent, so we represent the entire range of acces-
sible parameters in a 2D parameter space of porosity and fractal dimensionality. If
Eq. (6.21) and Eq. (6.22) are solved for θx = φ (1 − 0.1), each solution represents
a distinct curve in this space (we used 0.1 mainly because field soils rarely satu-
rate above 90 %. Two sets of curves (Fig. 6.3) divide the parameter space into three
regions. For the leftmost region both the hydraulic and electrical conductivity can
be represented as proportional to φ2, and they are thus proportional to each other.
While this region is large, it represents relatively ordered media, and few natural
media are found there (though many artificial media are because of their near uni-
formity). This represents a crucial difference between natural and artificial media,
and means that conclusions reached by studying artificial media will typically be
unsuitable for natural media. In the middle region it is still reasonable to represent
the electrical conductivity in the simple scaling form, but the hydraulic conductivity
develops a more complicated dependence on φ, so there is no simple relationship
between the two. In the rightmost region, neither property is a simple power of φ

and K ∝ σr2
c , just as in Friedman and Seaton [22] (the reader should check that

this conclusion is independent of the assumption of self-similarity). Of course, if
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Fig. 6.8 Plot of the φ–Dp (porosity–fractal dimension) plane showing regions of validity for per-
colation scaling. Below the electrical conductivity lines, scaling is valid for electrical conductivity;
below the hydraulic conductivity lines, scaling is valid for the hydraulic conductivity. The upper
lines represent solutions of Eqs. (6.23) and (6.27) under the conditions that θxK and θxσ , respec-
tively, are equal to 0.9φ. The lower lines represent the solutions of the equivalent equations gen-
erated by the Balberg [3] theoretical framework. Bemidji refers to unpublished data provided by
William Herkelrath, which are found mostly in the range where the saturated hydraulic conduc-
tivity follows an approximate power of the porosity with exponent larger than 2 and the electrical
conductivity would be consistent with a power 2

the fundamental parameters of a porous medium are not known, one cannot predict
which of the three regions a system will be found in, nor would it be possible to
determine r2

c , even if it could be guessed that the rightmost region were appropriate.
For porosities just above the relevant cross-over, each conductivity may be ap-

proximated as a non-universal power of φ, with μ∗ > 2 for the case that Dp is held
constant. An equivalent result is obtained by holding the porosity constant and in-
creasing Dp past its cross-over. So crossing the parameter space from bottom to
top (or equivalently, from left to right), each conductivity solution moves from the
universal scaling region, through a region in which the conductivity can be approxi-
mated by a non-universal scaling power, before entering a region where it is clearly
inappropriate to use simple scaling results. This process sets on at smaller values
of Dp in the hydraulic conductivity than in the electrical conductivity. Note also
that smaller values of Dp for a given φ are associated with narrower pore-size dis-
tributions, supporting (and allowing testing of) the common perception that larger
exponents for the saturation dependence of the electrical conductivity arise from
wider distributions.

In Fig. 6.8, the Hanford Site soils (Table 6.4) are well out of the regime of va-
lidity of Eq. (6.22) for K , but tend to cluster about the boundary for the validity
of Eq. (6.22) for σ . For small porosities, such as in rock, the region of validity of
Eq. (6.22) for K may approach actual conditions. Thus there appears to be a greater
justification for representing K as a power of φ in rocks than in soils, though for
K the power is likely to be larger than 2, in contrast to the result for σ . This is
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Table 6.4 (From [33]). Physical characteristics of Hanford site soils. Except for the soil texture
and KS (from [38]), all the primary data came from [21]

Soil Dp Ds φ θd Texture KS hA

VOC 3-0647 2.773 2.8 0.515 0.134 loamy sand 0.0002 85

VOC 3-0649 2.823 2.898 0.539 <0.12 loam ng 530

VOC 3-0650 2.863 2.917 0.624 0.37§ sandy loam 2.6E-07 51.5

VOC 3-0651 2.857? 2.87 0.374 0.126 loamy sand 0.0094 25

VOC 3-0652 2.878 2.56 0.352 0.11 sand 0.00037 58

VOC 3-0653 2.9? 2.874 0.419 0.12 sandy loam 5.8E-06 55

VOC 3-0654 2.931 2.916 0.466 <0.18 sandy gravel 0.00027 40

VOC 3-0654-2 2.849 0.419 0.11 sandy gravel 0.0136 3

VOC 3-0655 2.927 0.4 <0.15 silty,sandy gravel 0.000158 13

VOC 3-0657 2.955 0.359 <0.1 gravelly sand 0.0136 30

ERDF 4-1011 2.871 2.816 0.44 0.125 loamy sand 0.00001 56

ERDF 4-0644 2.906 2.81 0.38 0.115 loamy sand 5.7E-06 100.5

B8814-135 2.891 2.727 0.356 0.14 silty sand 1.36E-06 135

B8814-130B 2.886 2.682 0.329 0.11 loamy sand 4.1E-07 46

FLTF D02-10 2.778 2.776 0.496 0.2 silt loam 0.00012 100

FLTF D02-16 2.718 2.71 0.496 0.18 silt loam 0.00012 150

FLTF D04-04 2.806 2.804 0.496 0.2 silt loam 0.00012 100

FLTF D04-10 2.778 2.773 0.496 0.19 loam 0.00024 100

FLTF D05-03 2.737 2.735 0.496 0.205 loam 0.00029 130

FLTF D07-04 2.796 2.791 0.496 0.198 silt loam 0.00012 98

FLTF D09-05 2.8 2.83 0.496 0.19 loam 0.00029 72

FLTF D10-04 2.775 2.769 0.496 0.21 silt loam 0.00012 90

FLTF D11-06 2.803 2.798 0.496 0.2 silt loam 0.00012 76

FLTF D11-08 2.802 2.797 0.496 0.22 silt loam 0.00012 80

Inj. Test Site 1-1417 2.919 2.876 0.566 0.088 sand 0.00014 35

Inj. Test Site 1-1418 2.953 2.762 0.313 0.08 gravelly sand 0.00014 2

Inj. Test Site 2-1417 2.9 2.719 0.328 0.033 sand 0.00014 20

Inj. Test Site 2-1637 2.932 2.708 0.313 0.07 sand 0.0042 11

Inj. Test Site 2-1639 2.951 2.654 0.239 0.06 sand 0.0012 5

Inj. Test Site 2-2225 2.844 2.548 0.322 0.06 sand 0.0055 15

Inj. Test Site 2-2226 2.925 2.573 0.229 0.06 sand 0.015 7

Inj. Test Site 2-2227 2.919 2.666 0.271 0.056 sand 0.0087 5.4

Inj. Test Site 2-2228 2.904 2.376 0.212 0.047 sand 0.021 10

Inj. Test Site 2-2229 2.902 2.465 0.234 0.069 sand 0.0064 11

Inj. Test Site 2-2230 2.853 2.8 0.447 0.11 sand 0.00023 40

Inj. Test Site 2-2231 2.905 2.716 0.318 0.13 gravelly sand 0.0075 70

Inj. Test Site 2-2232 2.88 2.508 0.272 0.08 sand 0.041 14
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Table 6.4 (Continued)

Soil Dp Ds φ θd Texture KS hA

Inj. Test Site 2-2233 2.9 2.492 0.243 0.075 sand 0.017 11

Inj. Test Site 2-2234 2.81 <2 0.224 0.025 sand 0.021 80

US Ecology MW10-45 2.859 2.634 0.34 0.066 sand 0.00531 15.2

US Ecology MW10-86 2.764 2.569 0.397 0.069 sand 0.0197 20

US Ecology MW10-165 2.8299 2.511 0.324 0.058 sand 0.00663 22

218 W-5-0005 2.894 2.765 0.366 0.12 sandy loam 0.000067 35

North Caisson 2.806 0.08 sand 0.02 5

McGee Ranch 2.832 0.107 silt loam 0.001 45

why we plot the sandstone data from Thompson et al. [67] on the same figure. In-
terestingly, if the correct expression relating porosity and the fractal dimensionality
(Eq. (4.19)) is used, the data compiled by Thompson et al. [67] follow the same
trend as the Hanford Site soils, near the margin of the validity of Archie’s law for
the electrical conductivity, meaning that their exponents might well differ slightly
from 2 (as they indeed do). But if the Thompson et al. [67] result for Dp is used, the
rock samples fall along a curve connecting the origin to the lowest porosity value
of the Hanford site soils, clearly a quite different tendency. This supports our con-
tention that the Thompson et al. [67] calculation of Dp is incorrect. It also suggests
an intriguing possible connection between transport and structure: some aspect of
transport during depositional processes may prevent too large a value of the fractal
dimensionality, i.e., too great a disorder.

We note in conclusion some potentially relevant work based on the Effective-
Medium Approximation and a related paper using percolation theory. Sahimi [63]
gave a derivation of the Effective-Medium Approximation (EMA) to produce
Archie’s law. The exponent he used, μ∗ = z/(z − 2), is appropriate for spherical
particles but should be larger for flatter particles, such as clay grains [48]. Bussian
[13] generalized the self-similar EMA to include finite rock conductivity. He found
μ∗ > 3/2 in almost all cases, arguing that it was due to the finite rock conductivity
resulting from clay particles. Hilfer [24] also used percolation theory to find μ∗ ≥ μ.
Sahimi [63] criticized this result on the basis of its quasi-universality (and his un-
derstanding of the larger variability of μ∗). Clearly there is some variability in the
exponent, but not a great deal, and it appears that Hilfer’s result is more general
and more relevant than Sahimi indicated. In any case, Hilfer’s work is related to the
present treatment.

6.3 Electrical Conductivity as a Function of Saturation: Trends
and Potential Complications in Experimental Data

If the percolation interpretation of Archie’s law is correct at full saturation, then
the electrical conductivity must follow Eq. (6.22) as a function of saturation. In the
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next section, we examine data relating to electrical conductivity as a function of
saturation.

Electrical conductivity is frequently analyzed in terms of a “formation factor.”
We avoid this analysis because it is rooted in assumptions (which we have shown
to be unjustified) regarding a universal relationship between the electrical and hy-
draulic conductivity. We will continue use of the concept of tortuosity, despite some
uncertainty in its definition far from the percolation threshold, and despite possible
confounding influence of other factors, such as a non-zero critical volume fraction
for percolation.

We performed extensive analysis of eleven data sets for the electrical conductiv-
ity as a function of saturation, σ(θ) [19]. This analysis (1) showed that the typical
formula used in the soil physics community for the saturation dependence of the
electrical conductivity is inferior in description of the data to percolation scaling,
even for the data set it was originally developed for (and has a less satisfying phys-
ical basis), (2) identified several errors in analysis which could lead to a false esti-
mate for the actual experimental power on σ(θ), and (3) identified several physical
complications which can make experimental data appear to have a lower degree of
universality than implied by percolation scaling. One such complication involves
overlooking effects of contact resistance, which can prevent the data from obeying
a power law even though the data approach the appropriate power law asymptoti-
cally in the large resistance (low moisture content) limit. Another complication is
overlooking effects of “residual” salinity, i.e., cases where the salinity of the in-
jected fluid is less than the salinity in situ. This can arise from dissolution of ions
in the solid medium, and is most important in the case where the injected fluid has
low conductivity. Such an influence introduces an additional saturation dependence,
though it is easily modeled.

In both petroleum engineering and soil science, it is frequently assumed that
the electrical conductivity has contributions from both the solid and liquid phases
[16, 54, 58]. A widely used relationship in soil science is

σ(θ) = σs + σbθ(aθ + b) (6.35)

where the σs term denotes a “surface” or “solid” term [16, 58]. Interpreted as the
contribution of hydrated clay minerals, this term is considered independent of mois-
ture content except under extremely dry conditions (discussed in Sect. 7.4). The
second term, attributed to conducting fluid in the pore space, is the product of the
conductivity of the liquid phase, the water content, and a “transmission coefficient”
(a fudge factor) which is itself a linear function of the water content [58]. Over a
limited range of moisture values, θ(aθ + b) can present as (θ − θc)

μ for μ = 2.0 (as
can be seen in Fig. 6.9), so this traditional phenomenology may mask a universal
dependence compatible with Archie’s law.

Because the solid phase is always well above the percolation threshold, a “sur-
face” or “solid” conductivity term might be taken to be independent of saturation.
In Sect. 7.4 we discuss data that show a pronounced dependence of the clay conduc-
tivity on water contents: at sufficiently low water contents it may be necessary to
expand the analysis, depending on the mineralogy of the medium. The solid phase
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Fig. 6.9 Analysis of data by
Rhoades et al. [58], data for
the saturation dependence of
the electrical conductivity.
The percolation scaling result
(Eq. (6.28)) is compared with
the phenomenology
(Eq. (6.35)) of Rhoades et al.
[58]. (a) Linear plot,
(b) logarithmic
representation. Note that (b)
clearly shows the superiority
of Eq. (6.28)

conductivity becomes more important as the water content is reduced [17, 45], ap-
proaching the (water) percolation threshold from above. So while surface conduc-
tivity is typically neglected, it may dominate the system conductivity if the solution
electrical conductivity is low, the medium has low porosity or a low degree of satu-
ration, and/or the medium has a high specific surface area [39].

Universal formulations of the electrical conductivity were derived for a conduc-
tivity ratio σb/σs that is very large or infinite. Complications arise if this ratio is
small. In a number of the media we analyzed, there is evidence of a significant con-
tribution of the solid medium to the electrical conductivity, implying that the con-
ductivity ratio is not particularly large. In such cases, individual conducting path-
ways will tend to include both phases. We see therefore three approximations in
order of increasing complexity:
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Fig. 6.10 Values of the
apparent conductivity
exponent (logarithmic
derivative) μ∗ calculated
across a moving range of
water contents �θ = 0.01 for
the given porosity and several
values of Dp. Data following
some of these curves could be
interpreted as having a
non-universal value of the
conductivity exponent

1. The solid phase is assumed to have zero conductivity, so current flows only
through the liquid phase (Eq. (6.22)).

2. The solid and liquid phases are assumed to conduct strictly in parallel, and so a
constant solid phase conductivity σs is added to Eq. (6.22):

σ(θ) = σs + aσb(θ − θt)
μ (6.36)

This parallel approach is quite common, and yet it is most appropriate for
σs 
 σb in which only a negligible quantity of current flows from one phase
to another.

3. If the solid and fluid conductivities do not have a large contrast, then an opti-
mized path of conduction will sometimes go through the solid phase in order to
bypass a more tortuous path through the liquid, and sometimes through liquid
to bypass a higher resistance solid path. In other words, the two phases will not
conduct strictly in parallel; in fact, the degree of interaction in the conducting
pathways will vary with the relative conductivities of the two phases, as well
as with the liquid content. There is no universally agreed-upon mathematical
formulation for this interaction, which has been an active area of research for
decades. We conjecture that such a phenomenon would reduce the value of μ by
the tortuosity contribution to the conductivity exponent [65]. This could reduce
the exponent on χ to 2ν = 1.76 when there is little contrast between solid and
liquid conductivities.

When Dp increases slightly past the limit of validity of Eq. (4.20), electrical
conductivity is under-predicted by percolation scaling [28]; with further increases
in Dp, percolation scaling is no longer a useful framework for analysis. For some
combinations of φ and Dp the difference is subtle (Fig. 6.10), and data may indicate
percolation scaling (Eq. (6.20)) with an exponent μ∗ > μ. We have done no analysis
to test this suggestion.

When data are within the range of validity of percolation scaling, and yet indicate
a non-universal value μ∗, caution is still advisable. For example, incorrect estimates
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Fig. 6.11 Values of the
apparent conductivity
exponent (logarithmic
derivative) μ∗ calculated
across a moving range of
water contents �θ = 0.01 for
the given porosity and two
values of Dp for cases where
the critical water content is
underestimated, correct, and
overestimated

of θt can produce apparently non-universal values for μ∗. Hence simultaneous fit-
ting for both θt and μ has built-in pitfalls: under-estimation of θt can result in ap-
parent values of μ∗ > μ, while over-estimation of θt can produce values of μ∗ < μ

(Fig. 6.11). As a practical matter, it is best to start with the assumption that uni-
versality is observed, and only resort to non-universal exponents when other, more
mundane explanations have been exhausted. We try to minimize effects of incorrect
estimations of θt, including exclusion of the possibility of its existence, probably
contributing to our tendency to generate universal scaling where others do not.

6.3.1 Comparison with Experiment

Here we apply the percolation scaling framework to analysis of experimental data.
To the best of our knowledge, all of these data are from water-wet media, and hys-
teresis (if present) is ignored. The datasets examined (Table 6.5) represent both
coarse and fine soils, and both igneous and clastic sedimentary rock. We discuss
some of these datasets, with the presentation proceeding from simpler to more com-
plex cases. The complex cases illustrate how a sound theoretical footing can help
handle potentially confounding issues.

The data of Rhoades et al. [58] (Fig. 6.9a) were originally plotted in a form that
subtracted out any surface or solid conductivity σs, so our analysis simply involved
fitting values for a and θt. Our Eq. (6.31) yields the same R2 as Rhoades et al.’s
Eq. (6), but where their a and b are meaningless fitting parameters, our parameters
a and θt have physical significance: a gives the medium’s tortuosity at saturation,
while θt is the critical volume for percolation. For the Indio soil represented here,
we have a tortuosity at saturation of 1.23, and a critical volume fraction θt = 0.073.
Plotting the same data in logarithmic coordinates (Fig. 6.9b) highlights the percola-
tion scaling formulation’s superiority at low water contents.
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Table 6.5 Sources of electrical conductivity data examined. All data except Ren’s [57] were ob-
tained by digitizing published figures

Source Medium Parameters fita Slope Intercept R2 Comments

Archie [2] Gulf coast
sandstones

φc = 0.020,
a = 1.591

1.000 0.0023 0.746 No units given
in figure

Nacatoch sand φc = 0.010,
a = 1.067

1.000 0.0019 0.852

Rhoades et
al. [58]

Indio vfsl θc = 0.073,
a = 1.232

1.000 −0.0053 0.982 Surface
contribution (if
any) removed
in figure

Abu-
Hassanein
et al. [1]

soil A: 7 % S,
40 % c

θc = 0.011,
σr = 0.725

0.991 0.0011 0.973 Each soil
tested at 3
bulk
densities; all
densities
lumped
together in
our analysis

soil B: 7 % S,
53 % c

θc = 0.064,
σr = 0.787

0.843 0.0210 0.823

soil C: 38 % S,
40 % c

θc = 0.020,
σr = 0.112

0.919 0.0023 0.880

soil D: 35 %
S, 20 % c

θc = 0.000,
σr = 0.239

0.900 0.0038 0.865

Roberts and
Lin [61]

Tuff: Distilled
water

θc = 0.0024,
σr = 0.0039
(both)

0.715 0.0000 0.962 σb = 0.0 (DW),

J-13 water 1.215 −0.0000 0.916 σb = 0.0256
(J-13)b

Ren [57] Silica sand θc = 0.066,
a = 2.703
(σs = 0.396)

0.972 0.0143 0.948 Conductive
solid phase, 6
solution
concentrationsb

Binley et al.
[7, 8]

Sandstone (θc = 0.000)

aσb = 0.1466,
σs = 0.0020

1.000 −0.0004 0.965 Cassiani et al.
[15] give
aσb = 0.143,
σs = 0.0156

Rinaldi and
Cuestas [60]

Loess, 16 %
clay

θc = 0.040,
a = 2.132,
σr = 0.085

1.028 −0.0032 0.980 4 solution
concentrations

Archie’s [2] seminal paper presented electrical resistivity data for a number of
saturated consolidated Gulf Coast sandstones, and for samples of saturated uncon-
solidated Nacatoch sand. Fitting Eq. (6.23) to his sandstone and sand data, we obtain
correlation slopes of almost precisely one and intercepts near zero, in contrast to his
slopes of 0.66 (sandstone) and 1.55 (sand) (Table 6.5). As expected, tortuosity is
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Table 6.5 (Continued)

Source Medium Parameters fita Slope Intercept R2 Comments

Kechavarzi
and Soga
[37]

Clean sand θc = 0.000,
aσb = 20.67,
and
cρc = 0.792
(Test 1), 0.705
(Test 2), and
0.702 (Test 3)

0.980 0.0114 0.980 3 replications.c

Miniature
resistivity
probe appears
to have contact
resistance

Mori et al.
[50]

Tottori dune
sand

θc = 0.000,
a = 1.417

1.060 −0.0739 0.982 3 solution
concentrations

Tuli and
Hopmans
[69]

Oso flaco fine
sand

θc = 0.065,
a = 1.637,
σr = 0.384
(σs = 0.0725)

1.002 −0.0011 0.984 σs value given.
4 solution
concentrations

aValues in parentheses were given rather than fit. Units omitted from table for simplicity; see
corresponding figures for actual units
bWhere different solution concentrations were used, only σb varied: other parameters were held
constant across all concentrations
cFitting allowed a different value of ρc for each replication, but kept other parameters constant
across all replications

lower in sand than in sandstone. The critical volume for percolation in the sand is
just 1 % of porosity; that in the sandstone (2 % of porosity) would presumably be
higher if the sandstones were strongly cemented.

Binley et al. [7] use their data to make inferences regarding moisture content and
are content with a simple calibration to Archie’s law. A second set of data from the
same sandstone (φ = 9.3 %) was published in 2002. Cassiani et al. [15] tested their
own model using the data from Binley et al. [7], and found a constant solid contribu-
tion to the electrical conductivity of σs = 0.00143 S m−1 added to the 0.0156 S m−1

electrical conductivity of the fully saturated pore space. However, the Cassiani et al.
[15] analysis implies a relatively weak θ -dependent contribution (Fig. 6.12). Using
Cassiani et al.’s numerical values, and the common assumption that at typical exper-
imental frequencies the solid and solution conductions operate in parallel, we have
σ(θ) = 0.00143 + 0.0156(θ − θt )

2.0 S m−1 as a specific instance of Eq. (6.36). We
have no independent basis upon which to choose a value of θt in these sandstones.
We could assume θt = 0.1φ, but θt = 0 is more likely in a medium with significant
solid conductivity. As in the case of conducting spheres with pendular bridges (see
Sect. 7.2), any water at all should increase conductivity. Using the numerical val-
ues from Cassiani et al. [15] and assuming θt = 0 gives a no-parameter fit that is
clearly superior to Cassiani et al.’s [15] fit (Fig. 6.12). Fitting gives values slightly
different from Cassiani et al.’s [15], and yields a slope of 1.00 and an intercept of
−0.0004 for regressing predicted against observed values. Notice that if the solid
contribution (σs in Eq. (6.36)) had been underestimated, the prefactor σb = 0.0156



194 6 Hydraulic and Electrical Conductivity: Conductivity Exponents

Fig. 6.12 Comparison of
data for electrical
conductivity, σ , as a function
of water content, θ from
Binley et al. [7, 8] with
Eq. (6.28) and model results
of Cassiani et al. [15]

Fig. 6.13 Direct comparison
of measured and predicted
electrical conductivity values
for the data of Fig. 6.12

would be overestimated. That is, if we had optimized for θt alone, our value would
be dependent on the accuracy of the estimated σs.

Our predicted values compare well with Binley et al.’s [7, 8] observations
(Figs. 6.12 and 6.13). For both datasets (2001 and 2002), individually as well as
combined, Eq. (6.36) with θt = 0 matches the data with slope near one, intercept
near zero, and a high correlation coefficient (Table 6.5). In support of our conjecture
about the exponent μ taking on smaller values for systems with conducting solids,
we find μ∗ = 1.88 fits the data just as well as μ = 2.0.

A greater solid phase conductivity is seen (Fig. 6.14) in silica sand data (per-
sonal communication; described in Ren et al. [57]). Here it is clear that the solid
phase makes a constant contribution to the overall conductivity—again suggesting
θt = 0—with the remaining conductivity varying with the conductivity and volume
fraction of the solution. When we subtract the solid contribution, estimated as the
mean conductivity for the σb = 0 solution, the data fall on lines of μ = 2 in logarith-



6.3 Electrical Conductivity as a Function of Saturation: Trends and Potential 195

Fig. 6.14 Electrical
conductivity of unsaturated
silica sand at different
solution contents and
conductivities. Data from Ren
et al. [57]

Fig. 6.15 Comparison of
data with zero-parameter
predictions of electrical
conductivity of silica sand
after subtracting the
solid-phase electrical
conductivity (Data from
Fig. 6.14)

mic space (Fig. 6.15). Because each datum is from a separate packed core, the data
as a whole are somewhat noisy, but the figure shows reasonable prediction of total
conductivity from only the known values σb and θ , the assumed θt = 0, and the es-
timated value of σs. A slight improvement is given by optimizing for a and θt. The
lower slopes at low water contents, as suggested by the data, are consistent with
our conjecture that a somewhat smaller value of μ may be more appropriate for
media with similar solid and liquid phase conductivities. Thus, at low saturations,
the current does not have to avoid the solid phase, and the topology of the current
path is not coincident with the topology near the percolation threshold, so that the
conductivity does not quite follow the percolation prediction.

Residual salt in soil, whether precipitated or in the form of exchangeable cations,
may contribute a significant fraction of the liquid-phase conductivity. Making the
assumption that any residual salinity dissolves completely at any non-zero water
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Fig. 6.16 Comparison of
predicted (Eq. (6.28)) with
measured electrical
conductivity in loessial soils
(data from Rinaldi and
Cuestas [60])

content, we adapted Eq. (6.36) to account for residual salinity:

σ(θ) = a(σbθ + σr)

θ(1 − θt)μ
(θ − θt)

μ (6.37)

where σr is the residual salinity’s contribution to electrical conductivity. The factor
(σbθ +σr)/θ therefore accounts for both solution and residual salinity contributions.
Note that Eq. (6.37) is consistent with an apparent μ∗ = μ − σr(θ − θt)/[((σbθ +
σr)θ)], and approaches μ if either θ → θt or σr → 0. We apply the analysis of
Eq. (6.37) to the data of Rinaldi and Cuestas (2002), who packed loess soils with
known volume fractions of NaCl solution, and measured electrical conductivity at
different water contents (their Fig. 12). In the zero-electrolyte treatment, the increase
in electrical conductivity with water content can reasonably be attributed to residual
salts in the soil. Fitting Eq. (6.32) to their data provides an excellent fit (Fig. 6.16),
with R2 = 0.98. The optimized value for the residual salt equivalent conductivity is
0.085 S m−1. If the relative concentration of the various cations were known, their
absolute concentrations could also be determined.

The data of Abu-Hassanein et al. [1] provide another example of the importance
of accounting for residual salt. They present data on four soils differing in texture
and clay mineralogy; each soil was also tested at three different degrees of com-
paction. Tap water (σb = 9.5 × 10−3 S m−1) was used throughout. Because we
didn’t know a priori whether any given soil will have residual salt and/or solid
phase conductivity, we added a solid phase conductivity to Eq. (6.37). As it turned
out, the solid contribution was zero for all but soil D, which had a negligible value
of σs = 6.6 × 10−5 S m−1, so this was dropped from the analysis. Fitting each soil
in turn, we obtain R2 between 0.82 and 0.97 (Fig. 6.17). Residual salt accounts for
92–99 % of the saturated conductivity. Note that in Fig. 6.20, when all data sets for
σ(θ) are plotted simultaneously, these data lie conspicuously above the universal
line. Consistent with expectations, higher-clay soils had higher percentages of their
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Fig. 6.17 Comparison of
predicted (Eq. (6.37)) with
measured electrical
conductivity in four soils
(data from Abu-Hassanein
et al. [1])

Fig. 6.18 Comparison of
predicted and measured
electrical conductivity in soils
presented by Mori et al. [50]
labeled as MHMK2003 and
Tuli and Hopmans [69],
labeled as TH2004

conductivity contributed by residual salinity, and also had higher critical volumes
for percolation.

The datasets from Mori et al. [50] and Tuli and Hopmans [69] are somewhat sim-
ilar, so we present them together (Fig. 6.18). We obtain R2 = 0.98 fitting Eq. (6.36)
to Mori et al.’s data, slightly lower than their 0.99 using the Rhoades equation
(Eq. (6.35)), but we learn that θc = 0.0 and a = 1.417. Tuli and Hopmans [69] give
σs = 0.0725 dS m−1 for Oso Flaco sand; this is the only medium we encountered
that combined non-negligible solid conductivity with a non-zero critical volume for
percolation. Our fit yields a mean absolute residual of only 0.02, compared with
their value of 0.08.
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Fig. 6.19 Comparison of
electrical conductivity as a
function of water content
with Eq. (6.38), including
effects of a contact resistance
that is independent of water
content (Data from
Kechavarzi and Soga [37])

Last, we examine an unexpected complication in the data published by Kechavarzi
and Soga [37]. They present triplicate calibration curves for their miniature resis-
tivity probes, and report that fitting Archie’s law to the data gives R2 = 0.91, a
disappointing value for a calibration curve. A plot of the raw data (Fig. 6.19) shows
a marked decrease in the slope of the σ(θ) curve; this, combined with the unknown
characteristics of the miniature probe, raised the possibility that there was some con-
tact resistance in their experimental setup. The washed sand was unlikely to have
residual salinity, and solid conductivity would curve the slope up rather than down.
We accordingly allowed for contact resistance ρc in the σ(θ) relationship through a
modification of Eq. (6.36) (with zero solid conductivity), giving

σ(θ) = 1

cρc + 1
aσb(θ−θt)μ

(6.38)

where the constant c allows for unknown geometric factors specific to their experi-
mental setup. Equation (6.38) yields μ∗ = μ/[1 + aσbcρc(θ − θt)], which coincides
with μ if any of the constants are 0 as well as in the limit θ → θt. This new equation
fits the data quite well (Fig. 6.19), with R2 = 0.97.

The analyses of the saturation dependence of the electrical conductivity are sum-
marized in Table 6.5. Our examination of the datasets discussed above found critical
volume fractions for percolation ranging from 0.0 to 0.073, reasonably in line with
Hunt’s [29] observed range. Values of a, which we interpret as the electrical tortuos-
ity at saturation, ranged from 1.07 to 2.73, a relatively small variation. These results
are roughly compatible with reported literature values of 1/a in the range 0.56 to
0.8 (see Sect. 10.1), which would give a range of a values of 1.25 to 1.9 [4].

In two cases the brine conductivity σb was not given, forcing us to lump aσb
into a single parameter; when this is done, the value of the lumped parameter can-
not yield useful information about its component parts. Conductivity attributable to
residual salinity was encountered in tuff and several of the soils, but in only one
sand and none of the sandstones. In Fig. 6.20 we represent all the saturation de-
pendent electrical conductivity from Table 6.5 together. As predicted, all the data
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Fig. 6.20 Summary plot of all the data sets presented in Table 6.5 showing constant adherence to
the predicted universal behavior. For all data sets, the water content was normalized by subtracting
the critical value, and the electrical conductivity was normalized by subtracting the solid phase
contribution, then dividing by the brine conductivity value. Data are parallel to the line given by
the universal conductivity exponent, μ = 2. Those data sets that lie above the universal line were
analyzed as having residual salinity, those that curved downward away from the universal line, as
having a contact resistance

indicate an exponent μ = 2.0 (Fig. 6.20), with deviations below the line indicating
contact resistance (e.g., [37]), and deviations above the line indicating the effect of
residual salinity (e.g., [1, 61]). Deviations attributable to residual salinity are most
pronounced for low-conductivity solutions and/or low water contents (e.g., [57]).
Further, as predicted, the apparent power μ∗ increases to 2 in the limit θ → θt for
data sets with either contact resistance (e.g., [37]) or with residual salinity (e.g., [1]).

In subsequent analysis, we plotted critical volume fractions vs. porosity to ex-
amine the possibility that a linear relationship exists between them. The result
(Fig. 6.21) is consistent with our conjecture that θt ∝ φ, and finds a similar coef-
ficient (0.12 rather than 0.1). In this analysis the regression line was forced through
the origin, and we did not include cases for which θt = 0. Note that almost all cases
with θt = 0 had large solid conductivities; in such cases the simple percolation argu-
ment that θt = pcφ will not hold. However, plotting 1/a against (1 − θt)

2 shows no
relationship as might have been expected from arguments leading to Eq. (6.32). This
indicates that a may indeed be best interpreted as the tortuosity of the conducting
pathways in the limit of full saturation.

6.4 Effects of Arbitrary Pore-Size Distributions

This calculation of K(θ) follows the same procedure as in Chap. 5, but here we
assume no particular form for the pore size distribution. However, we do assume
that there are minimum and maximum pore sizes, so the pdf for W(r) should still
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Fig. 6.21 Plot of the (non-zero) critical volume fractions from Fig. 6.20 vs. porosity. Although the
plot is quite noisy, it generates θt ∝ φ. The proportionality constant is approximately 1/8 when the
fit is constrained to pass through origin

be valid between the limits r0 and rm. Thus the same integral provides the basis for
all the calculations of equilibrium quantities, regardless of the actual form of W(r)

appropriate for a given soil:
∫ r2

r1

r3W(r)dr (6.39)

When r2 = rm and r1 = r0—that is, when we are integrating from the smallest to
the largest pore in the system—Eq. (6.39) yields a numerical constant of order unity
times the porosity φ. As we saw in the fractal treatment, it is possible to define a
suitable normalization constant to generate precisely the porosity; here this is also of
no real concern since we will be using proxy data from the cumulative soil particle
size distribution. Such a choice guarantees normalization as well. When r2 = A/h

(as long as this value is less than <rm) and r1 = r0, Eq. (6.39) defines the moisture
content θ . When r2 = rm and r1 = rc, Eq. (6.39) yields the critical moisture content
for percolation θt; if θt is known we can thereby deduce the bottleneck pore radius rc
under saturated conditions. When r2 = A/h and r1 = rc, Eq. (6.39) again yields θt,
and can be used to deduce the bottleneck pore radius rc(θ) for any moisture content
θ > θt.

If one assumes that distributions of pore aspect ratios are independent of pore
size, the ratio [rc(θ)/rc|θ=φ]3 again yields K(θ)/KS, as long as θ > θxK . Building
in this assumption deprives the procedure of some generality, but the assumption
is not unreasonable for many natural media, and allows the procedure to generate
the known appropriate K(θ)/KS when the medium is well described by a fractal
model. Thus the present formulation allows comparison of the present prediction
with analytical results for media presumed compatible with the fractal model.

The cross-over moisture content θxK is found as follows. Instead of using
Eq. (6.16) as the functional form for the hydraulic conductivity (a result specific to
fractal geometry), K is set to the unspecified (and thus general) form K(θ). Com-
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Fig. 6.22 Use of numerical
model to predict K for
arbitrary soil pore space
distribution and comparison
with saturation dependence of
K for McGee Ranch soils
(used in Fig. 6.1). Note that
there were 11 different
particle size distributions
taken from surface soils from
which to generate a pore size
distribution, and that K was
measured at 5 different
depths. This leaves as many
as 55 possible comparisons,
of which we present 2. Note
that these two presented had
the lowest R2 values of all 55
comparisons. The larger
discrepancy than in Fig. 6.1
may be because the particle
size data chosen was not
representative of the pore-size
distribution at the particular
depth. In any case comparing
a numerical result with an
analytical result for a fractal
model and experimental data
can clarify the relevance of
the fractal model

bining this K with Eq. (6.20), and setting K(θ) and dK/dθ equal for each equation
when θ = θxK yields

θxK = θt + 2K(θxK)

dK
dθ

∣
∣
θ=θxK

(6.40)

This is the fundamental analytical result employed by Blank et al. (2008) to make
comparisons between theoretical and experimental results for K(θ). The factor 2 is
from the percolation exponent μ.

The pore-size distribution for field samples is seldom, if ever, known. But one
often has access to the cumulative particle-size distribution, which can be used as
a proxy for the cumulative pore-size distribution (with the usual uncertainties re-
lating pore and particle sizes). Evaluating Eq. (6.39) between any two limits is thus
equivalent to taking differences in the cumulative particle size distribution evaluated
at two corresponding limits. Comparison with experiment is shown in Fig. 6.22a,b.
The comparisons are drawn from the same soils as in Fig. 6.1, but here no assump-
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tions have been made regarding the form of the pore size distribution. Given results
from both experiment and an analytical model of flow on a random fractal, the nu-
merical procedure could serve as a test of the validity of the fractal model. But note
that in the present case there were 11 different particle size distributions to choose
from (all taken at the surface), while the hydraulic conductivity was determined at
5 different depths. We have chosen the two comparisons with the lowest R2 val-
ues. We believe that this means that the two particle size distributions chosen were
the least suitable for the hydraulic conductivity shown, though this is not the only
possible interpretation. Thus, if we chose to fit the fractal model to the same parti-
cle size distributions, and use those to predict the same two hydraulic conductivity
functions, we would also presumably have similar discrepancies. The meaning of
the discrepancies would indeed be that the model was not appropriate for the data,
but we think that in such a case the message would simply be that the parameters
were inappropriate, not the choice of model. Figure 6.1 did indicate that for this
particular suite of soils, the fractal model was appropriate.

6.5 Water Film Issues

As saturation is reduced and pathways through water-filled pore space lose connec-
tivity, other modes of water transport become more prominent. Two such modes are
film flow and vapor phase flow. We do not discuss the latter. Film flow will be gov-
erned by the roughness of grain surfaces, with surface fractal dimension Ds. It has
been argued [18, 68] that such conduction will follow

K ∝ S
3

m(3−Ds) (6.41)

For discussion of the physical interpretation of the parameter m, see the original
articles. Equation (6.41) is reminiscent of Eq. (6.16), and clearly has a similar ori-
gin. But a quasi-universal film-flow conductivity, proportional to the cube of the
saturation, may be derived rather easily. The treatment starts with an expression for
medium saturation when all water is present as films, that is when the film thickness
�r is smaller than the smallest pore radius, itself smaller than the smallest particle
radius, r0:

S =
∫ rm
r0

r2�rW(r)dr
∫ rm
r0

r3W(r)dr
=

∫ rm
r0

dr�rr1−D 2−D

r3−D
m∫ rm

r0
drr2−D 3−D

r3−D
m

=
(

A

V

)

�r (6.42)

In this expression the fractal dimensionality, D, refers to the distribution of parti-
cle radii. When film thicknesses �r exceed r0, then the saturation must be written
differently to include some water-filled pores:

S =
∫ rm
�r

r3W(r)dr + ∫ �r

r0
r2�rW(r)dr

∫ rm
r0

r3W(r)dr
�r > r0 (6.43)



6.5 Water Film Issues 203

After considerable simplification,

S = �rA

v
−

(

1 − 1

φ

)[

1 − 1

2 − D

(
�r

r0

)3−D

+
(

3 − D

2 − D

)(
�r

r0

)]

(6.44)

Consider the case Eq. (6.42) when the film thickness is small compared to the small-
est pore size. This temporarily permits us to avoid the difficulties associated with
combined film and capillary flow. The conductance of the film in each pore, if all
pores had the same shape (which would have to be true in the mean at least if the
medium were a random fractal), would be proportional to:

g ∝ r�r

l
(�r)2 (6.45)

Equation (6.45) always yields a conductance proportional to the cube of the film
thickness. When the pore length l is proportional to the pore radius r , then Eq. (5.45)
yields

g ∝ (�r)3 ≈ S3 (6.46)

independent of pore size. If all conductances have approximately the same value,
and that value is proportional to S3, then the hydraulic conductivity must also be
proportional to S3. Even if the condition on the proportionality of pore length and
radius is not fulfilled, critical path analysis would still identify a bottleneck con-
ductance g, among a distribution of conductances, whose dependence on saturation
would control the system response. It is easily seen that the proportionality of each
individual g to S3 would still guarantee that the hydraulic conductivity be propor-
tional to S3. In this lowest level approximation, there is no threshold moisture con-
tent, since water flow can occur as soon as the water films begin to form, since they
form everywhere. However, see Chap. 7 for a discussion of complications that can
become relevant at molecular scales.

In natural porous media, especially those in which the pore size distribution cov-
ers at least two orders of magnitude, we don’t expect to see Eq. (6.41) or Eq. (6.46)
easily verified. In such media the pore size distribution itself is sufficient to cause
a variation in K of 6 or more orders of magnitude if r4/l ≈ r3 scaling governs
the hydraulic conductivity. When θ < θxK , percolation scaling will cause a further
drop before film flow can prevent K from disappearing altogether. For example, if
KS = 10−2 cm/s, then values well below 10−8 cm/s would still be dominated by
capillary flow through water-filled pores. Values of K much lower than 10−8 cm/s
are seldom measured, because experiments under typical conditions would have to
last several years. On the other hand, monosized sphere packs (e.g., glass beads)
may have a ratio of the maximum to the minimum pore size as small as 2, so their
hydraulic conductivity may vary by as little as 23 = 8 before other flow mechanisms
become more important.

To see more clearly how an alternate means to transport water might show up
in experimental data, consider Fig. 6.23, which shows data for K(S) from Dr. M.
Ioannidis (personal communication, 2006) for a medium of nearly monodisperse
glass beads. The porosity of the medium is 0.3, noticeably smaller than appropriate
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Fig. 6.23 Semi-log
comparison of universal
scaling with data from
Dr. Ioannidis on the
saturation dependence of the
hydraulic conductivity of
comparatively ordered
granular media. The media
should be considered to have
pore radii that vary over less
than a factor 2

for a cubic packing, and more nearly appropriate for a random close packed struc-
ture. To a first approximation, one can consider the experimental medium to have no
variability in pore size (Ioannidis, personal communication, 2007). The theoretical
formulation of this chapter would therefore require that the hydraulic conductivity
should exactly follow the universal scaling of Eq. (5.21). Clearly it does not, at least
not over the full range of saturations.

Our single fit parameter is a critical volume fraction (or moisture content) for
percolation. The value obtained is θt = 0.049. This corresponds to a critical fraction
of the porosity of 0.049/0.3, about 16 %, a very common result for continuum per-
colation noted first by Scher and Zallen [64]. Over almost two orders of magnitude,
K via Eq. (6.22) is in good agreement with the experimental data; only at lower
saturations do the experimental data exceed the prediction. This discrepancy has
two obvious potential interpretations. One possibility is that a different mechanism
for water transport, such as film flow, becomes important as the saturation nears
20 %. The second is that universal scaling of the hydraulic conductivity is not valid,
and that both the exponent μ∗ and the critical volume fraction θt should be consid-
ered fitting parameters. This possibility is shown in Fig. 6.24; then in Fig. 6.26 we
show that log(K) vs. log(θ) is rather well described as a non-universal power with
μ∗ = 2.81 and θt = 0.0145, rather than μ = 2.0 and θt = 0.049.

How should one interpret these results? We will consider this problem from two
perspectives. First we re-visit Buckingham’s paper [11] of a century ago and its
continuing influence. Consider Fig. 6.25, Buckingham’s schematic understanding
of the dependence of hydraulic conductivity (denoted by Buckingham as λ) as a
function of moisture content. As reported by Narasimhan [53],

Buckingham was led to the conclusion ‘that the capillary conductivity, λ, will be a strong
function of water content, θ , in a soil.’ He conjectured that the relation would have the shape
indicated schematically in Fig. 6.25. Between A and B, flow occurs dominantly through
saturated capillaries. Between B and C, capillary and film flow coexist. Between C and D
flow is exclusively through films. Between D and F films progressively break up.
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Fig. 6.24 Semi-log
comparison of non-universal
scaling with the same data as
in Fig. 6.23 and with choice
of an optimal value of the
exponent, μ∗

Fig. 6.25 Buckingham’s [11]
schematic interpretation of
the various regimes of
hydraulic conductivity

Based on our quantitative theory of K , we broadly agree with this interpretation
of Fig. 6.25. Capillary flow will dominate from A to B, but also for much of the
range from B to C, where the steep slope is related to the approach to the percola-
tion threshold for the water-filled pores. Although film flow will become important
well before C, it is not film flow in parallel that is so important (and seemingly im-
plied by Narasimhan [53]), but film flow in series with capillary flow, preventing the
mean separation of water flow paths from diverging as the percolation threshold is
approached. Even as the percolation threshold is approached, water need flow only
a microscopic distance through thin films to incorporate finite-sized clusters into the
flow and thus avoid divergence in flow path separation [28].

From C onward we generally agree with Buckingham: film flow can maintain
higher values of K than predicted by theory as the percolation threshold is ap-
proached. As the saturation drops further, in the vicinity of C, Fig. 6.20 shows qual-
itatively what one would expect if an alternate mode of conduction were to act in
parallel to the mechanism of capillary flow treated theoretically. Narashimhan [53]
continues, “Voluminous soil hydraulic conductivity data now exist not only con-
firming Buckingham’s conjecture of the form of the functional dependence but also
showing that the λ vs. θ relation is strongly hysteretic [51].” Linear plots of the uni-
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Fig. 6.26 The same
comparison as in Fig. 6.24,
except represented on a
log-log plot

Fig. 6.27 The same
comparison as in Fig. 6.23,
but shown on a linear plot to
make a graphical
correspondence with the
schematic drawing of
Buckingham [11]

versal curve, together with K(θ) from Ioannidis as a function of moisture content
(Figs. 6.24 and 6.27), are in general accord with Buckingham’s sketch (Fig. 6.25).
Buckingham’s proposed mechanism appears generally consistent with the discrep-
ancy between data and universal scaling of percolation theory.

Secondly, we consider the actual values of the fitting parameter θt. To estimate
the critical volume fraction in Ioannidis’ glass bead medium, one can apply the
Vyssotsky et al. [72] bond percolation result. In a hexagonal close-packed sys-
tem (similar to random close-packed) there are two types of sites: one with coor-
dination number 4, the other with coordination number 8. In hexagonal packing
there are 2 tetrahedra for every octahedron; the mean is therefore ∼5.3, giving
pc ≈ 0.283. If half of the pore space is found in the bonds, then a water volume
fraction θ = (0.5)(0.28)φ = 0.0425 should suffice for percolation. The critical vol-
ume fraction found using the universal value μ = 2.0 (θt = 0.049) is considerably
closer to θt = 0.0425 than is the value θt = 0.0149 fitted using a non-universal ex-
ponent. The critical volume fraction fitted using a non-universal exponent requires
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closer to 1/6 of the pore space to be in the bonds. Moreover, θt = 0.049 is consis-
tent with the critical volume fractions extracted from a wide range of experiments
[19, 30].

We conclude that the discrepancy between the prediction of universal scaling
of the hydraulic conductivity and experiment shown in Fig. 6.18 does not imply
relevance of a non-uniform conductivity exponent. It more likely represents a cross-
over from K dominated by flow through water-filled pores, to the less conductive
film flow. At higher saturations, film flow operates in parallel with capillary flow
but is negligible in comparison; when the continuity of capillary flow is interrupted,
film flow operates in series with capillary flow through finite clusters.

How do the data from Ioannidis fit in with the themes of this chapter? Practically
speaking, Buckingham’s conclusions are most relevant for granular media with nar-
row grain size distributions. Even in Ioannidis’ artificial medium, we detect only the
onset of film flow. In natural media with much broader pore size distributions, the
hydraulic conductivity variation attributable to the pore size variability is already
several orders of magnitude; effects of percolation scaling extend a couple of orders
of magnitude below that. Thus, if the saturated hydraulic conductivity is 10−2 cm/s,
our percolation approach may account for values down to 10−7 cm/s to 10−11 cm/s,
and values in this range are rarely measured. So while Buckingham’s thesis has sup-
posedly been amply verified [53], we doubt that it has been verified often. Recall that
the difference between two nearly equal values may easily vary over several orders
of magnitude. Rigorous comparisons between theory and experiment for this capil-
lary/film flow cross-over issue therefore require exacting methods, and may still be
inconclusive. Nonetheless, we believe our interpretation of alternate water transport
modes operating in concert with capillary flow is consistent with both theory and
observations.

The above discussion simultaneously addresses two common but apparently un-
related questions: (1) what properties or mechanisms could result in a non-universal
conductivity exponent? and (2) why is the critical volume fraction so small? As seen
here, both questions may be resolved by considering a parallel conduction mecha-
nism.

How would Narasimhan view our above approach? We assume that he would be
skeptical, in view of the following quotes from the same paper [53]:

Philosophically, Buckingham’s skepticism raises the issue of the role of mathematics in the
earth sciences. Milton Whitney, who led the Bureau of Soils and who had the vision to bring
in talented physicists such as Briggs and Buckingham, believed that soil physics problems
were so complex that they should not be handled strictly mathematically [43].

It is appropriate to conclude this section with a thoughtful remark attributed to Ansel
Adams, the renowned landscape photographer and conservationist: ‘There is noth-
ing more disturbing than a sharp image of a fuzzy concept.’ It is our belief, however,
that with improvements in both the resolution and quantitative analysis of experi-
ments, fuzzy concepts lose their validity if they do not become clearer.
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6.6 Electrical Conductivity for θ < θt

We now present a suggestion for the means to calculate the electrical conductiv-
ity for θ < θt. Below the percolation threshold, electrical conduction must utilize a
portion of the medium with a smaller electrical conductivity, σs, than whatever con-
ducting fluid (with σ = σ0) is filling the pore space. Clearly, however, the system
conductivity is maximized by minimizing the path length in the lower-conducting
medium.

The present calculations simply seek an optimal path length. An optimal path
will utilize many finite clusters in addition to the infinite cluster. Such a path was
shown [28] to scale with p − pc exactly as the correlation length χ . This was the
basis of our earlier argument regarding liquid-phase diffusion: the total distance that
water must flow through liquid films above the percolation threshold is not a critical
function of percolation. Rather, both the separation between the connected water
carrying paths and the total distance through the disconnected finite clusters scale
the same way, and the distance through film flow is the difference between the two.
Of course it is not necessary that the difference between two divergent quantities
cancel; only that their ratio do so. However, if it is the optimal path that is sought,
then the difference should be as small as possible, and thus not diverge. Thus the
total distance that the electrical current travels through the liquid should scale as
the correlation length for θ < θt, and the distance through the solid medium must
be the size of the system, x, less the correlation length χ . This suggests that the
conductivity should have the form

σ(θ) = x
χ
σ0

+ x−χ
σs

= x

χ0(θt−θ)−ν

σ0
+ x−χ0(θt−θ)−ν

σs

(6.47)

proportional to the inverse of the sum of the resistances along 1D paths which min-
imize the total resistance. Such a power-law rapidly reduces the conductivity below
the percolation threshold to the solid or surface conductivity.

The above calculation can equally apply to finding an optimal flow path (and as-
sociated K) through a system of muds and sands for which the sand portion does not
percolate. The Stanley group has long addressed the problem of finding distributions
of such path lengths and transit times; see for example Lopez et al. [46].

Because Chaps. 6 and 7 are very closely related, a summary of Chap. 6 is com-
bined with the summary of Chap. 7, and given at the end of Chap. 7.

Problems

6.1 Prove that rc is the same for electrical and hydraulic conductivities and draw an
analogy to Problem 3.1 in Chap. 3, which asked to show that the value obtained
for Rc was independent of whether one obtained rc first and substituted into the
equation for R(r), or whether one integrated over R directly.
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6.2 Consider a log-normal distribution of pore sizes, but assume as in a fractal
model that all pores have the same shapes (this is a necessary assumption in a
fractal model, but only an assumption of convenience, otherwise). Derive equiv-
alent expressions for the saturation dependence of the hydraulic and electrical
conductivity using critical path analysis and find the moisture contents at which
the critical path analysis must be replaced by percolation scaling. These exer-
cises may be performed numerically. Compare the ranges of parameter space
(Dp, φ), for which Archie’s law may be reasonably derived from percolation
theory determined from the log-normal and the power-law distributions. Does
a log-normal distribution tend to make Archie’s law more or less widely appli-
cable than is the case for a power-law distribution of pore sizes?

6.3 Graphically represent the apparent power μ∗(φ) of the porosity in Archie’s
law when the pore size distribution modifies its value from 2 in the cases
that (a) the ratio r0/rm is held constant and (b) the fractal dimensionality
is held constant. You will need to keep in mind that in either case μ∗ is
d ln(σ )/d ln(φ) = (φ/σ)dσ/dφ.

Appendix: Calculation of Water Retention and Unsaturated
Hydraulic Conductivity for Pore-Solid Fractal Model with Two
Fractal Regimes

Water Retention Curve

We assume that the pore-size distribution of soils follows the pore-solid fractal
(PSF) approach proposed by Perrier et al. [55]. This model combined with percola-
tion theory has been successfully applied to model unsaturated hydraulic conductiv-
ity of soils with different textures [23]. The continuous probability density function,
W(r), of pores consistent with the Hunt and Gee [33] analogy would be:

W(r) = β
3 − D

r3−D
max

r−1−D, rmin < r < rmax (6.48)

where β = p/(p + s) in which p and s are the pore and solid fractions [55], respec-
tively, D is the pore-solid interface fractal dimension, r is the pore radius (r ∝ 1/h

where h is the tension head), and rmin and rmax are the smallest and largest pore
radii, respectively.

Figure 6.28 shows a schematic of a soil water retention curve with two fractal
regimes. The first regime covers mostly the large (frequently structural) pores, and
the second regime includes the small (textural) pores. The water content at the cross-
over point is denoted by θx which is equal to the porosity of the second regime φ2.

In a porous medium having a probability density function that scales differently
in two different regimes, e.g., D1 and D2 (Fig. 6.28), the total porosity may be found
by integrating r3W(r) between rmin and rmax to obtain
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Fig. 6.28 Depiction of two
separate fractal regimes in a
soil water retention curve and
corresponding definitions

φ = φ1 + φ2 = β1
3 − D1

r
3−D1
max

∫ rmax

rx

r3r−1−D1dr + β2
3 − D2

r
3−D2
x

∫ rx

rmin

r3r−1−D2dr

= β1

[

1 −
(

rx

rmax

)3−D1
]

+ β2

[

1 −
(

rmin

rx

)3−D2
]

(6.49)

where rx is the pore radius at the cross-over point where the fractal behavior of
the medium changes from regime 1 to regime 2, and D1 and D2 are the pore-solid
interface fractal dimension of the first and second regimes, respectively.

The water content of pores with radii less than or equal to r in the second regime
(hx < h < hmax) is determined as follows (r < rx):

θ = β2
3 − D2

r
3−D2
x

∫ r

rmin

r3r−1−D2dr = β2

[(
r

rx

)3−D2

−
(

rmin

rx

)3−D2
]

(6.50)

Likewise, the water content of pores with radii less than or equal to r in the first
regime (hmin < h < hx) would be (r > rx):

θ = β1
3 − D1

r
3−D1
max

∫ r

rx

r3r−1−D1dr + β2
3 − D2

r
3−D2
x

∫ rx

rmin

r3r−1−D2dr

= φ2 + β1

[(
r

rmax

)3−D1

−
(

rx

rmax

)3−D1
]

(6.51)

Combining Eqs. (6.50) and (6.51) with the capillary equation gives the following
piecewise soil water retention curve model:

θ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ h < hmin

φ2 + β1
[(

h
hmin

)D1−3 − (
hx

hmin

)D1−3] = φ − β1
[
1 − (

h
hmin

)D1−3]

hmin < h < hx

β2
[(

h
hx

)D2−3 − (
hmin
hx

)D2−3] = φ2 − β2
[
1 − (

h
hx

)D2−3]
hx < h < hmax

(6.52)
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Fig. 6.29 Three distinct
ranges of moisture content
that control the determination
of rc when θt is less than
either partial porosity

Unsaturated Hydraulic Conductivity

Following Ghanbarian-Alavijeh and Hunt [23], we use critical path analysis com-
bined with the PSF model to find the critical pore radius for percolation for saturated
and unsaturated conditions. Generally, there are two possibilities.

Possibility 1: θt < φ1

Using the pore-solid fractal approach, we define the critical volume content of per-
colation θt from critical path analysis for saturated conditions (θ = φ) as follows:

θt = p1

p1 + s1

3 − D1

r
3−D1
max

∫ rmax

rc(θ=φ)

r3r−1−D1dr = β1

[

1 −
(

rc(θ = φ)

rmax

)3−D1
]

(6.53)

Solution of Eq. (6.53) combined with Eq. (6.52) for rc(θ = φ) gives

rc(θ = φ) = rmax

[
β1 − θt

β1

] 1
3−D1

, θt < φ1 (6.54)

For unsaturated condition as we show in Fig. 6.29, three cases are possible:

(I) θ − θt > φ2 and θ > φ2 (see Fig. 6.29)
The critical water content for percolation θt would be

θt = β1
3 − D1

r
3−D1
max

∫ r

rc(θ)

r3r−1−D1dr = β1

[(
r

rmax

)3−D1

−
(

rc(θ)

rmax

)3−D1
]

(6.55)

Rewriting Eq. (6.55) combined with Eq. (6.52) for rc(θ) yields

rc(θ) = rmax

[
β1 − φ + θ − θt

β1

] 1
3−D1

(6.56)
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Fig. 6.30 Two separate
distinct ranges of moisture
contents that guide
determination of rc when θt is
larger than the porosity
associated with the upper
fractal regime

(II) θ − θt < φ2 and θ > φ2 (see Fig. 6.29)

θt = β2

[

1 −
(

rc(θ)

rx

)3−D2
]

+ β1

[(
r

rmax

)3−D1

−
(

rx

rmax

)3−D1
]

(6.57)

Solving Eq. (6.57) combined with Eq. (6.52) for rc(θ) results

rc(θ) = rx

[
β2 − φ2 + θ − θt

β2

] 1
3−D2

(6.58)

in which rx = rmax[β1−φ1
β1

]1/(3−D1).
(III) θ − θt < φ2 and θ < φ2 (see Fig. 6.29)

θt = β2

[(
r

rx

)3−D2

−
(

rc(θ)

rx

)3−D2
]

(6.59)

Solution of Eq. (6.59) combined with Eq. (6.52) for rc(θ) gives

rc(θ) = rx

[
β2 − φ2 + θ − θt

β2

] 1
3−D2

(6.60)

Possibility 2: θt > φ1

In this case, the critical water content for percolation θt at saturation (θ = φ) is

θt = β2

[

1 −
(

rc(θ = φ)

rx

)3−D2
]

+ φ1 (6.61)

Rewriting Eq. (6.61) combined with Eq. (5.5) for rc(θ = φ) gives

rc(θ = φ) = rx

[
β2 − θt + φ1

β2

] 1
3−D2

, θt > φ1 (6.62)

As we show in Fig. 6.30, there are two cases possible for the unsaturated condition:
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(I) θ − θt < φ2 and θ > φ2 (see Fig. 6.30)

θt = β2

[

1 −
(

rc(θ)

rx

)3−D2
]

+ θ − φ2 (6.63)

Solution of Eq. (6.63) for rc(θ) gives

rc(θ) = rx

[
β2 − φ2 + θ − θt

β2

] 1
3−D2

(6.64)

(II) θ − θt < φ2 and θ < φ2 (see Fig. 6.30)

θt = β2

[(
r

rx

)3−D2

−
(

rc(θ)

rx

)3−D2
]

(6.65)

Solution of Eq. (6.65) for rc(θ) yields

rc(θ) = rx

[
β2 − φ2 + θ − θt

β2

] 1
3−D2

(6.66)

In fact, when θt > φ1, rc(θ) follows the same function of water content
(Eqs. (6.64) and (6.66)) for both θ > φ2 and θ < φ2.

To model unsaturated hydraulic conductivity, we invoke Poiseuille’s law for
self-similar fractal porous media in which the hydraulic conductance g of a given
pore is proportional to r4 and the inverse of the pore length (l), also assumed
to be proportional to r(l ∝ r). Therefore, g is a function of pore radius cubed,
r3 [23, 27]. Since the hydraulic conductivity K(θ) is directly proportional to the
critical hydraulic conductance gc, the unsaturated hydraulic conductivity normal-
ized with the saturated hydraulic conductivity (as the reference point) is given
by

K(θ)

Ks
= gc(θ)

gc(θ = φ)
= r3

c (θ)

r3
c (θ = φ)

(6.67)

Thus, the new piecewise unsaturated hydraulic conductivity model for the two pos-
sibilities outlines above would be

Possibility 1: θt < φ1

K(θ)

Ks
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[β1−φ+θ−θt
β1−θt

]3/(3−D1), θ − θt > φ2, θ > φ2

(β
3/(3−D1)

1

β
3/(3−D2)

2

)(β1−φ1
β1

)3/(3−D1) [β2−φ2+θ−θt]
[β1−θt]3/(3−D1)

3/(3−D2)
,

θ − θt < φ2, θ > φ2, θ < φ2

(6.68)
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Possibility 2: θt > φ1

K(θ)

Ks
=

[
β2 − φ2 + θ − θt

β2 + φ1 − θt

]3/(3−D2)

(6.69)

If one assumes that the percolation threshold is equal to 0, the unsaturated hydraulic
conductivity model proposed above (Eqs. (6.68) and (6.69)) is simplified to

K(θ)

Ks
=

⎧
⎪⎪⎨

⎪⎪⎩

[β1−φ+θ
β1

]3/(3−D1), θ > φ2

(β
3/(3−D1)

1

β
3/(3−D2)

2

)(β1−φ1
β1

)3/(3−D1) [β2−φ2+θ]
β

3/(3−D1)

1

3/(3−D2)
, θ < φ2

(6.70)

In all comparisons that we have made with experiment, we have found that θt = 0
was appropriate, for reasons that we explain in the text. Nonetheless, in principle
one should refer to Eqs. (6.68) and (6.69) for more general results. As long as both
regimes are associated with textural pores, the simplest assumption should be used,
namely that θt is independent of moisture content. In this case one would normally
expect θt to be finite. But in the case that structural and textural pores are present,
it must be considered possible that θt takes on a different value for the two types of
pores. If θt is large, it is important that the results we obtain here would not extend
to low saturations, where universal scaling of the hydraulic conductivity would be
expected. But when the percolation threshold occurs at zero moisture content, the
range of moisture contents at which universal scaling should be observed will typ-
ically be 0 < θ < 0.1, and is often even more restricted. In the case that θt = 0 we
could neglect this complication, since the experimenters never explored moisture
contents sufficiently low that universal scaling of the hydraulic conductivity would
be encountered.
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Chapter 7
Other Transport Properties of Porous Media

In this chapter we discuss air (non-wetting phase) permeability, thermal conduc-
tivity, and diffusion in both liquid and gas phases. The saturation dependence of
thermal conductivity serves to illustrate some interesting limitations and compli-
cations of a percolation-based approach. Then we summarize a treatment of the
frequency-dependent electrical conductivity in hydrated smectite clay minerals. We
interpret these experimental results using critical path analysis for interacting hop-
ping charges (a topic of Chap. 5) through surface water between and on the outside
surfaces of sheet silicates, which also brings in the subject of the continuity of water
paths. We then address the particle size dependence of the ac conductivity. While we
argued in Chap. 5 that the hydraulic conductivity cannot be predicted from the dc
electrical conductivity (because dc electrical conductivity mostly follows the univer-
sal scaling of percolation), ac conductivity does appear to have utility for predicting
the hydraulic conductivity. Finally we briefly present potential applications to elec-
troseismic phenomena, and give a combined summary for Chaps. 6 and 7.

By contrasting the predicted behaviors of the various properties, and comparing
those predictions with experiment, we generate a deeper understanding of the rela-
tive roles of geometry (pore size) and topology (pore connectivity). These relative
roles are different for different properties. When we learn (for example) that so-
lute diffusion in finite systems also follows universal scaling, this result strengthens
the conclusion from the previous chapter that the saturation-dependence of electri-
cal conductivity is given by universal scaling. We also discover which property is
most sensitive to the particular way water is apportioned in the pore space (thermal
conductivity).

7.1 Air Permeability

Air flow in partially saturated porous media is of roughly equal relevance to the
hydraulic conductivity. Richards’ equation, as often applied, accounts only for water
flow, but in fact it should be written for both air and water flow; if water leaves a
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pore, air must enter it, and accessibility issues may hinder the air entrance more
than the water departure. For example, in heap leaching of mined ore, it is important
to be able to predict simultaneously the air and water flow. Similarly, the preferred
locations of bacteria depend on their particular metabolism, but as a rule, bacterial
colonies tend to be found along phase interfaces, particularly where air, water and
solid phases are found together. Thus the growth characteristics of these colonies
may depend sensitively on both air and water flow.

Unlike the electrical and hydraulic conductivities, the air permeability ka as a
function of the air-filled porosity ε is relatively simple to predict. Recall that if water
and air are the only two fluids, they must occupy the entire void volume: ε + θ = φ.
For an arbitrary fluid the permeability is obtained from the conductivity by multiply-
ing by the kinematic viscosity. This adjustment allows direct comparison between
permeabilities of different fluids, as long as (1) they wet the surface similarly, and
(2) their critical volume fractions for percolation are the same.

We will wish to scale the air permeability to its value under perfectly dry con-
ditions, ka(ε = φ), similarly to the scaling of the (water) permeability to its value
under conditions of complete saturation, kw(θ = φ). The latter should scale with
saturation in the same fashion as the unsaturated hydraulic conductivity (Chap. 6).
This brings up first the subject of whether ka(ε = φ) = kw(θ = φ). To the extent that
the critical volume fraction for percolation (εt for air and θt for water) is indepen-
dent of the fluid, the air permeability of a completely dry porous medium should
equal the water permeability of the same medium when water saturated. However,
this will not generally be true.

A key difference between air and water in soil is that water is a wetting fluid,
while air is not. This difference is accentuated by clay minerals, which have high
specific surface area, and whose surfaces are often electrostatically charged; both of
these properties cause clay to adsorb water. A wetting fluid has a no-slip condition
(zero velocity) at the solid surface, and the presence of the electrical double layer,
with dissolved cations interacting with negative charges at the mineral surface, pro-
vides additional near-surface viscous drag. In contrast, a non-wetting fluid has some
slip at the surface, such that the extrapolated point at which there would be no slip is
actually below the solid surface [93]. Additionally, air being less dense than water
decreases the molecular interactions. So while air and water appear to have similar
permeabilities (after adjustment for viscosity) in coarse materials like sand, in finer
and higher-surface area materials, the distinction between wetting and non-wetting
fluid (and especially between water and air) becomes important.

It can be convenient to think of this contrast as effectively increasing the pore
sizes for air, and reducing them for water, because this would have the effect of re-
ducing rc for water below that for air. And in fact, in high-clay soils we do observe
that εt < θt, while in low-clay soils water sorption can sometimes be neglected and
we expect εt ≈ θt. In such cases εt, like θt, should be on the order of 0.1φ. Our anal-
ysis of nearly 40 soils below will be seen to be consistent with this proportionality
in the mean, but it turns out not to be useful as a prediction.

Consider now the saturation dependence of the air permeability. Because water
is the wetting fluid, at any intermediate water content 0 < θ < φ the water occupies
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the smaller pores, while air occupies the larger. Consequently, adding water to a dry
medium does not change the bottleneck radius rc for air flow, even while it increases
the rc for water flow. This holds for all air-filled porosity values ε ≥ εt. Because
there are no geometrical effects via a bottleneck pore radius, permeability must be
controlled by the topological effects. It is precisely these topological effects that
are accounted for by universal percolation scaling, so air permeability ka(ε) must
follow [44]

ka(ε) ∝ ka|ε=φ(ε − εt)
μ (7.1)

over the entire range of air-filled porosity values. This result, like all percolation re-
sults, becomes approximate far from the percolation threshold because percolation
theory is approximate far from the threshold, but clearly there is virtually no addi-
tional dependence related to the pore size distribution. The conclusion of Hazlett and
Furr [37] is essentially equivalent to this result. Since we have shown that the pore
size distribution is not relevant to the saturation-dependence of the air permeability,
it should be obvious that non-universal scaling is not an issue here. However, we
can add the following comment: approach to the threshold value of air-filled poros-
ity for percolation does not correspond to an approach to zero conductance. Rather,
this limit corresponds to a finite conductance, and there is no a priori reason to ex-
pect any singular behavior in the pore size distribution at a finite conductance. In
other words, we do not expect such strong correlation between the structural con-
straints on the particles that organize the pore space with the energetic constraints
on the fluids within the pore-space, which are a function of the interfacial tension
and any electrostatic attraction to the solid boundary.

Equation (7.1) is clear in its implications for theory, but it is not useful for com-
parison with experiment. One would like to use the results for completely dry ma-
terials, as far as possible from the percolation threshold, to predict the behavior of
media with the approach to the percolation threshold where measurements are more
problematic. On the other hand, the exponent 2 is valid asymptotically in the ap-
proach to the percolation threshold, with any deviation from exact scaling increas-
ing with distance from the threshold, meaning that the numerical prefactor ought
best be fixed by comparisons near the percolation threshold. Thus the perspectives
of utility and theory are opposite. But fortunately, proportionality (7.1) appears to
give an accurate prediction in the majority of soils all the way from the threshold to
completely dry conditions (as we show below). That means that one can write the
more useful

ka(ε) = ka|ε=φ

[
ε − εt

φ − εt

]μ

(7.2)

with 3 parameters: porosity (which we generally know), the reference permeability
for the dry medium ka(ε = φ), and the threshold air content εt. The tricky part of
this prediction problem is generating a value of εt without conducting experiments
in air permeability, an issue we return to below.

As always we have the complication that for 2D systems the exponent μ should
be 1.3, rather than 2.0 in 3D. For experiments which were essentially 2D in nature
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Fig. 7.1 Plots of the air-phase permeability as a function of wetting phase saturation. The solid
dots are actual measurements with two phases present; the open circles are measurements of single
phase flow. Data from Steriotis et al. [98]. The experimental conditions were appropriate for 2D
flow. The exponent, m, was chosen to be 1.27 (not updated to 1.3). The theoretical prediction
(dashed curve) from Eq. (7.1) uses one parameter, the critical air fraction for percolation, equal
to 0.16. Only the solid circles represent a direct measurement; the open circles are from a proxy,
which Steriotis et al. [98] wished to show were a reasonable approximation to the actual values

(the dimension transverse to flow smaller by a factor of ca. 1000 than the other two
dimensions), Steriotis et al. [98] reported the non-wetting phase relative permeabil-
ity shown in Fig. 7.1. These experimental results are compared with the prediction of
Eq. (7.1), using the 2D value μ = 1.3 [44]. This comparison required one adjustable
parameter, εt = 0.16φ.

Unsal et al. [106] present data for air permeability which compare well with
universal scaling (Eq. (7.1)), as seen in Figs. 7.2 and 7.3. Interestingly, Unsal et
al. [106] asserted that they could extract the pore-size distribution from their data,
an assertion at odds with the strictly topological control of permeability given in
Eq. (7.1).

Since examining Unsal’s data, we have found nearly forty additional experimen-
tal datasets [8, 14, 20, 24, 96, 99, 104, 105], many of which are reproduced in
Figs. 7.4–7.6. The characteristics of each medium are listed in Table 7.1. For each
medium we sought an exponent near 2 by varying εt to maximize the correlation
coefficient. As shown below, the values of εt we obtained could be predicted by
analysis of the water retention curve (WRC). Figures 7.4 and 7.5 show that the R2

values obtained in this procedure often exceeded 0.99, sometimes even 0.999. In
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Fig. 7.2 Comparison of air
permeability with universal
percolation scaling
(Eq. (7.1)). Data from Unsal
et al. [106]

Fig. 7.3 Direct comparison
of predicted and observed
values of the air permeability
(data from Fig. 7.2). Note that
the slope is 1, R2 = 0.998,
and the value of the intercept
is about 1/1000 of the typical
permeability values

these cases the data had little noise, and covered most of the possible range of rela-
tive saturations without large gaps.

We also investigated a large dataset of Tang et al. [100], which contains some
samples for which the data were incomplete (Fig. 7.6). In this second dataset, six
materials yielded values of the exponent well under 2 (Table 7.2). We therefore
examined whether there were correlations between the exponent obtained and the
number of data points or the range of saturations tested. Smaller exponents were
indeed correlated with datasets that covered a smaller range of porosity (Fig. 7.7),
contained fewer measurements (Fig. 7.8), or had both drawbacks. In particular, no
experiment that yielded an exponent less than 2 covered more than 40 % of the
available saturation range. As can be seen, reducing the range of accessed porosity
values to 40 % by dropping the data points at lower air contents (Fig. 7.9) can
reduce the value of the extracted exponent from 2 to 1.63, a value similar to two of
the individual results from [100].

After these individual comparisons we investigated the general applicability of
Eq. (7.2) by normalizing both ordinate and abscissa. Excluding the Tang et al.
[100] dataset yields an exponent of 2.03 ± 0.03, a proportionality constant of 0.96
and an R2 value of 0.97 (Fig. 7.10). (An ideal result would be an exponent of 2,
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Fig. 7.4 Comparison of the
normalized universal scaling
of the air permeability with
four classic data sets. The
threshold εt was chosen to
produce a power near 2 with a
high value of R2

and both proportionality constant and R2 values equal to 1.) Treating the Tang
et al. [100] dataset separately leads to the comparison in Fig. 7.11. If their six ex-
periments with unexpectedly small values of the extracted exponent are dropped
from consideration—a choice which might not be justified—the rest of the Tang
dataset yields exactly the same relationship for the exponent as the remaining me-
dia, namely, 2.03 ± 0.03. It appears that the exponent μ = 2 holds generally, and
exceptions are due to incomplete data.

We return to the question of predicting εt. It should perhaps not be a surprise
that the average value of εt was equal to 10 % of the average value of the porosity.
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Fig. 7.4 (Continued)

However, the variability of εt within the datasets could not usefully be predicted by
this relationship. Values of εt were correlated with the air content at high moisture
contents where the WRC deviated from fractal scaling, a result completely in accord
with what is known about water retention curves (see Chap. 8).

We found a crossover point θi in which the slope of moisture content changes as
shown in Fig. 7.12. At this crossover point, θi , air starts percolating into the porous
medium. Subtracting this value from the moisture content at saturation (φ−θi ) gives
an estimate of the air-filled porosity threshold for percolation. Our results obtained
from dataset 1 are given in Fig. 6.13. The Touma and Vauclin [104] data, whose
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Fig. 7.5 Comparison of the
normalized universal scaling
of the air permeability with
four additional datasets. The
threshold εt was chosen to
produce a power near 2 with a
high value of R2

εt value is almost 70 % of the porosity, was excluded from Fig. 6.13. The paired-
samples t-test indicated that there is no significant difference (p > 0.05) between
the εt values calculated from the measured air permeability data and those estimated
as φ − θi from the wet end of WRC. Unfortunately, accurate estimation of εt using
the proposed approach requires accurate measurements of the WRC at the wet end,
especially near saturation, so this method may not be reliable for small εt values
(<0.035).
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Fig. 7.5 (Continued)

Although we could do a reasonably good job of predicting εt from the WRC,
our skill at estimating this parameter was also small when its value was on the
order of 10 % of the porosity or less (Fig. 7.13). This difficulty is likely traceable
to the number of complications in the WRC at high moisture contents discussed in
Chaps. 3 and 4, including edge effects (larger for small systems), and gravity (larger
for tall systems).

Figures 7.14 and 7.15 present additional comparisons of theory and experiment.
In Fig. 7.14 an ideal result would be y = x with an R2 of 1: the regression line
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Fig. 7.6 Representative data from Tang et al. [100] compared with normalized form of universal
scaling. Note the poorer coverage and greater fluctuations in the data than in Figs. 7.4 and 7.5

Fig. 7.7 Indication that for
the Tang et al. [100] dataset
that it was only in cases
where the number of data
points was relatively small
that it was not possible to
extract the universal power

should lie precisely on the 1:1 line. Our comparison yields y = 0.95x + 0.04, indi-
cating a systematic discrepancy of less than 4 % over half the range of air perme-
ability values, and an RMSE of 0.07, indicating a random error of about 7 %. The
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Fig. 7.8 Indication for the
Tang et al. [100] data set that,
only in cases where the
measured range of saturation
values was less than 40 % of
the total accessible, was it not
possible to match the
universal exponent value
of 2.0

Fig. 7.9 Demonstration that
failure to measure the six
lowest saturations would also
prevent detecting the
universal behavior already
found for the Columbia sandy
loam, and generate (smaller)
values of the exponent similar
to those found in six soils of
the Tang dataset

largest source of random error is probably experimental error, while the systematic
bias presumably arises from our assumption that the percolation scaling results are
accurate arbitrarily far from the threshold, at which moisture content our choice of
normalization pins the theoretical value. That this is so can be easily seen by simply
comparing the regression line with the 1:1 line and contrasting that discrepancy with
the spread of data points around the two lines. Such a contrast indicates that, even
under ideal experimental circumstances (dataset 1), the experimental uncertainty is
likely greater than the error in theory. Our contention is therefore that appeal to
experiments with (a) a restricted range of investigated saturations, or (b) measure-
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Fig. 7.10 Demonstration that
all the data from the first
dataset fit well to the
normalized equation from
universal scaling

Fig. 7.11 Analogous plot for
the Tang et al. [100] dataset.
Although the predictive value
of universal scaling appears
lower in this data set, removal
of the six samples discussed
in the text (and considered in
Figs. 7.7 and 7.8) would yield
exactly the same result as in
Fig. 7.10

Fig. 7.12 Demonstration of
the determination of εt from a
soil water retention curve as
the difference between the
porosity and the moisture
content at the intersection of
the two lines in the
construction
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Fig. 7.13 Showing the
correlation between εt as
determined from the WRC
and as determined by
optimizing the fit to universal
scaling

Fig. 7.14 Direct comparison
of theoretical and
experimental values for the
normalized air permeability

Fig. 7.15 Comparison of
theoretical and experimental
values of the air permeability
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ments at saturation values that are too widely separated, will lead to worse estimates
of the air permeability than could be obtained from a single measured value under
dry conditions (provided the conditions of that single experiment are ideal), use of
Eq. (7.2), and the water retention curve for estimating εt.

In conclusion, not only is there essentially no doubt that the air permeability is
described by universal scaling from percolation theory, but furthermore the universal
scaling, normalized to the air permeability under perfectly dry conditions, is such a
good means to predict the air permeability that its accuracy may exceed that of the
experiments themselves.

7.2 Thermal Conductivity

7.2.1 General Comments on the Saturation Dependence
of Thermal Conductivity

The saturation dependence of thermal conductivity, λ(θ), is difficult to analyze
within the context of percolation theory. First, all three phases in a typical unsat-
urated geological medium (water, air, solid) have non-zero thermal conductivities,
though the thermal conductivity of air λa is typically sufficiently small to ignore.
Second, the thermal conductivity of the water and solid phases is not a simple or
universal ratio. The solid phase conductivity λs may be only half that of water, λw,
(organic soils), or as much as 15 times greater (high quartz soil), with more typical
ratios (5 to 10) depending on mineralogy; other ratios will obtain in artificial me-
dia. Third, the ratio of the thermal conductivity of a saturated soil to its value in the
same soil when dry is typically less than 10. This implies that the kind of critical
path analysis arguments that we have been employing, which can contain uncer-
tainty regarding factors of 2 (in order to get tendencies of many orders of magnitude
correct), will tend to contain too high a level of uncertainty. Also, because of the typ-
ically higher conductivity of the solid phase, even under dry conditions the medium
is well above the percolation threshold. This introduces considerable uncertainty
into percolation scaling arguments.

To summarize: even when the medium is dry it is well above the percolation
threshold (which is never reached); when it is saturated, the volume fraction of con-
ducting material is 1, as far from the percolation threshold as it is possible to get.
This is the worst possible condition to handle with percolation theory! An additional
complication arises from the physical arrangement of the solids. While water at all
saturations tends to enhance the connectivity of the pathways, in granular media at
fairly low saturations the most important effect of water is to enhance the conduc-
tion between adjacent grains. A simultaneous solution, rather than a separation, of
all these problems is required because the total range of thermal conductivity values
from dry conditions to saturation is seldom much more than an order of magnitude,
mixing all these effects together. This places a high degree of importance on an
accurate description of the geometry (a very difficult problem) for a property that
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does not really exhibit a wide range of values. Under such conditions it is difficult
to attack the problem logically and quantitatively. Our attempt here should be un-
derstood within the context of developing a unified picture of all conduction and
transport properties in one place.

Theoretical Construction

We approach the problem from two opposite directions. First we look at geometri-
cal influences under ideal conditions to make geometry dominant; then we look at
percolation scaling under ideal conditions to make scaling simple. Then we com-
bine the two approaches to see whether the resulting expression is compatible with
experiment over all saturations and mineralogies, so as to include realistic non-ideal
conditions.

Consider a medium composed of solid spheres. Ignoring deformation, contact be-
tween two spheres is simply a point, leading to an infinite contact resistance between
each osculating pair. When water enters such a medium it tends to form pendular
(ring) structures at the contact points. Because the pendular structures are much
wider than they are long, for a small increase in water content one gains a large in-
crease in conductivity [87]. The resulting conduction problem has never been solved
analytically. However, for a cubic lattice of spheres with water occurring only in
pendular rings, the conductivity is approximately [29]

λ(θ) ≈ λ|θ=0 + aθb (7.3)

with a ≈ (λs/λw)3/2 and b ≈ 0.1 + 1.75(λw/λs). Commonly b appears to take on a
value near 1/4. This approximate power-law form of λ(θ), with a sublinear power
at typical values of λs/λw, is consistent with measurements of λ(θ) in granular
media at low water contents. The form of Eq. (7.3) also holds for deformed spheres
with area rather than point contact [29], so the behavior (if not the actual value
of the exponent) applies beyond perfect spheres in a cubic lattice. Equation (7.3)
also holds, under some rather restrictive assumptions (needed for calculation), for
spherical particles with a range of sizes, though the expressions for the parameters
are not identical [29]. At higher water contents, as menisci coalesce and fill pores,
resistance to heat flow is mainly due to air inclusions, probably well described by
simplistic treatments of tortuosity. In the wet regime λ(θ) is often predicted by a
simple linear mixing model.

We construct the following percolation theoretical argument for the thermal con-
ductivity of natural porous media under the conditions that λa = 0, and λw = λs,
and that geometrical effects of pendular structures can be ignored. Under such con-
ditions, ignoring everything except the bulk fraction of the medium which is either
solid or water, one can represent thermal conductivity via universal scaling as

λ(θ) ∝ (1 − φ + θ)2 (7.4)

Note that, even in the case φ → 1, the solid portion of the medium percolates by
construction: any medium must be “grain-supported” or it would collapse, and the
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Fig. 7.16 Comparison of
Eq. (7.4) for θ = 0 (dry soils)
with all the relevant data
collected by Côté and Konrad
[17]. While considerable
curvature exists, the slope
picked by Excel on a
logarithmic plot is 2.017, less
than 1 % different from the
slope predicted

porosity would change. Thus there should be no need to include a critical solid
fraction for percolation.

An expression such as Eq. (7.4) cannot be quantitatively accurate, because the
percolation threshold is not approached even at θ = 0. Further, in the limit θ → φ

(effectively p = pc = 1) it predicts d(logλ)/d(log θ) = 2, instead of 1. On the other
hand, Eq. (7.4) does reproduce an observed proportionality of the thermal conduc-
tivity of dry soils (θ = 0) to a non-linear power of the density (1 − φ)n [10], with
Campbell [9] choosing n = 2. In fact, Campbell’s result for the thermal conductiv-
ity of dry soils, considered by some to be predictive, is λ = 0.03 + 0.7(1 − φ)2,
a relationship similar to Archie’s law. To investigate further, we digitized 168 data
points for thermal conductivity of dry rocks and soils from Côté and Konrad [17],
and present log[λ] vs. log[1 − φ] to investigate Eq. (7.4) in the limit θ → 0. The
extracted power is 2.017, less than 1 % different from the predicted value, but con-
siderable curvature exists (Fig. 7.16). Note that analysis of rocks separately leads
to a larger slope (2.47) and soils separately to a smaller slope (1.43), while each of
those individual graphs also contains noticeable curvature (not shown). Including
18 additional soil data points from Lu et al. [64] would make no visible change in
the curvature, but would reduce the power to 1.98. Given that the thermal conduc-
tivity of dry soils and rocks is sensitive to the exact mineralogy, our preliminary
comparison, lumping all types together, is suggestive but not conclusive.

By itself Eq. (7.4) bears little resemblance to experimental results for the
saturation-dependence of the thermal conductivity. So we return to the approximate
result (Eq. (7.3)) of Ewing and Horton [29] and the fact that it appears to have rele-
vance also in media with a wider range of particle sizes. This allows an interpretation
of Eq. (7.3) in terms of critical path analysis, namely that it generates the appropriate
expression for the dependence of the critical (most highly resistive) pendular ring
on a percolating path. If this is true, then we could postulate the following formula
for the thermal conductivity,

λ(θ) ∝ (1 + θ − φ)2(a + cθ)1/4 (7.5)

which includes simultaneously effects of the saturation dependence of the topology
of the connected network (the first factor) and the resistance of the most resistive
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elements (the second factor). These factors affect the thermal conductivity simulta-
neously (think back on the elementary physics formula, R = ρl/A, discussed in the
Chap. 5) and thus should appear in a product. Of course in the limit θ → φ, topology
and percolation scaling no longer have a significant effect and the contribution from
Eq. (7.4) should be replaced by a function that asymptotically approaches a constant
value. Further, the resistance of the critical conductance only begins to fall after a
volume of water roughly equal to the surface film contribution to θt (see Chap. 6)
has been adsorbed. Finally, at higher saturations menisci start to coalesce, water
fills pores, and the pendular rings cease to grow as individual structures [29]. Thus,
c in Eq. (7.5) must be zero for very small saturations and jump to a geometrically
dependent non-zero value at some saturation. At the moisture content at which pen-
dular structures cease to grow, the term cθ1/4 should remain constant. Finally, note
that, according to the interpretation, the term a in Eq. (7.5) ultimately represents the
contact area in the absence of water. Together, this generates four parameters.

In the context of this book, Eq. (7.5) is rather disappointing: it has more parame-
ters and less simplicity than corresponding equations for the hydraulic and electrical
conductivities! Further, as we will see, it only describes data for the thermal con-
ductivity up to a fairly low water content; at higher saturations Eq. (7.5) uniformly
overestimates λ; seriously so in the case of sandy soils. The reason for this is, of
course, that the topological description near the percolation threshold cannot hold
in the vicinity of p = 1. Once the correlation length diminishes to a typical grain
spacing, it cannot diminish further, and the conductivity cannot rise further, although
Eq. (7.5) does describe almost the entire saturation dependence of λ for some clay-
rich soils (Fig. 7.17a). So, from an analytical perspective, one would simply have to
stop at Eq. (7.5), and ignore more saturated conditions. Such a course, however, is
not satisfying.

It turns out that a small modification of Eq. (7.5) makes it perform well over the
entire range of saturations for all soils investigated. These include thermal conduc-
tivity data of Lu et al. [64], and the saturation-dependent phenomenology of Camp-
bell [6], for which the dry limit was mentioned below Eq. (7.4). The latter, being an
empirical prediction, represents a smoothing of experimental error and may not be
as reliable a comparison, though it simultaneously implies a much wider relevance
of the present results. The specific modification of Eq. (7.5) is to reduce the power
of the factor (1 − φ + θ ) from 2 to 1, making it a linear function. This modification
should not be applied over the entire range of saturations; moreover it would ruin
the approximate correlation of the thermal conductivity under purely dry conditions
with the square of the density. However, as noted in Chap. 2, precisely this function
should be adopted at values of p > 0.8, which in Fig. 7.17b, occurs at θ = 0.25, but
in Fig. 7.17a occurs at moisture contents between 0.2 and 0.28.

Perhaps because of the dominant role of pendular structures over most of the
range where the quadratic result would be preferred, the linear result describes the
thermal conductivity well (Fig. 7.17b) over the entire range of moisture contents,
and the fitted parameters are as physically meaningful as those extracted from a
comparison with Eq. (7.5) (Table 7.3). The one exception is the total amount of
water in pendular structures, which should not exceed 10 % of the porosity. But
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Fig. 7.17 (a) Comparison of experimental data for the thermal conductivity from Lu et al. [64],
with predictions from Eq. (7.5) and its modification. Experimental data are the various symbols,
while Eq. (7.5) is the dashed line, and Eq. (7.5) with a substitution of the linear power is repre-
sented by the solid lines. Note that in the particular soil with contrasting theoretical expressions,
the superiority of the linear model is confined to a single data point, but typically the divergence
between experiment and Eq. (7.4) becomes clear for data above θ = 0.25, or even θ = 0.2. Soils
with higher thermal conductivity have higher sand contents. (b) Comparison of phenomenological
data (equation from Campbell plotted by Bristow) with theoretical predictions from Eq. (7.5) and
its modification. Different symbols were chosen for different soil types: squares for a sand, trian-
gles for a silt loam and crosses for a clay loam. Again the discrepancy between experiment and
Eq. (7.5) is smallest in the finest soil and it is this case that is compared with both Eq. (7.5) (dashed
line) and the modification with a linear power (solid line). In the other two cases, Eq. (7.5) would
become inaccurate already by θ = 0.20 and θ = 0.35, respectively

when we use the linear dependence, we may find fitted values giving, up to 40 % of
the porosity occupied by pendular structures. However, this may not be as serious
as it seems; the 1/4 power factor from the pendular structures rises very rapidly at
first and more slowly at higher moisture contents, making its contribution nearly
constant. That is, the fit is not very sensitive to the value of θ chosen at which the
pendular structures no longer increase in size, so one can impose a physically sensi-
ble ceiling with minimal loss of agreement with experiment. In other cases the ratios
of the parameters are consistent and not too different from Eq. (7.5) (Table 7.3).
The threshold water fraction is likely largely stored in films. The sum of the thresh-
old water fraction and the amount in pendular structures is 0.09 (silty clay loam) and



7.2 Thermal Conductivity 239

Ta
bl

e
7.

3
T

he
rm

al
co

nd
uc

tiv
ity

pa
ra

m
et

er
s

an
d

st
at

is
tic

al
qu

an
tit

ie
s

cl
(B

ri
st

ow
)

sl
(B

ri
st

ow
)

sa
nd

(B
ri

st
ow

)
sc

l(
L

u)
sl

(L
u)

sa
nd

(L
u)

E
qu

at
io

n
(7

.5
)

D
ry

so
il

co
nd

uc
tiv

ity
0.

21
0.

25
0.

3
0.

25
0.

22
1

Pe
nd

ul
ar

co
nt

ri
bu

tio
n

0.
30

5
0.

5
1.

02
0.

42
0.

56
T

hr
es

ho
ld

0.
14

0.
12

0.
04

0.
06

0.
06

8
Pe

nd
ul

ar
w

at
er

fr
ac

tio
n

0.
06

0.
07

0.
03

0.
03

0.
07

Sl
op

e
1.

1
1.

19
1.

5
1.

2
1.

19
In

te
rc

ep
t

−0
.0

3
−0

.0
9

−0
.2

7
−0

.1
2

−0
.0

9

R
2

0.
99

3
0.

97
0.

92
0.

91
0.

92
4

M
od

ifi
ed

E
q.

(7
.5

)
D

ry
so

il
co

nd
uc

tiv
ity

0.
13

0.
16

0.
16

0.
14

4
0.

12
0.

43
Pe

nd
ul

ar
co

nt
ri

bu
tio

n
0.

3
0.

49
0.

79
0.

29
0.

38
0.

54
T

hr
es

ho
ld

0.
14

0.
13

0.
04

9
0.

11
0.

06
8

0.
02

Pe
nd

ul
ar

w
at

er
fr

ac
tio

n
0.

19
0.

07
7

0.
03

6
0.

18
0.

18
0.

2
Sl

op
e

0.
99

4
0.

99
2

1.
00

7
0.

99
8

0.
98

8
0.

99
8

In
te

rc
ep

t
0.

00
4

0.
00

7
−0

.0
09

0
0.

00
8

0.
00

4

R
2

0.
99

7
0.

99
7

0.
99

9
0.

98
9

0.
98

5
0.

99
8

R
at

io
lin

ea
r/

qu
ad

ra
tic

D
ry

so
il

co
nd

uc
tiv

ity
0.

61
90

47
62

0.
64

0.
53

33
33

33
3

0.
57

6
0.

54
29

86
Pe

nd
ul

ar
co

nt
ri

bu
tio

n
0.

98
36

06
56

0.
98

0.
77

45
09

80
4

0.
69

04
76

2
0.

67
85

71
T

hr
es

ho
ld

1
1.

08
33

33
3

1.
22

5
1.

83
33

33
3

1
Pe

nd
ul

ar
w

at
er

fr
ac

tio
n

3.
16

66
66

67
1.

1
1.

2
6

2.
57

14
29

A
bb

re
vi

at
io

ns
:c

l=
cl

ay
lo

am
,s

l=
si

lt
lo

am
,s

cl
=

si
lty

cl
ay

lo
am



240 7 Other Transport Properties of Porous Media

0.14 (silt loam) in the fits of the data of Ren using Eq. (7.5). These values are similar
to the critical volume fraction, 0.11, in a Hanford Site silt loam, and to thresholds
for diffusion in Moldrup’s silt loams, 0.12 [73]. The linear fit leads to 0.29 and 0.25
for the water fractions of the silty clay loam and the silt loam, respectively. These
values are upwards of 50 % of the porosity. Statistical comparisons always favor the
linear version of the topological factor, because the quadratic version overestimates
λ as saturation is approached. However, conceptually we should imagine a cross-
over from a quadratic dependence for 1 − φ + θ < 0.8 to a linear dependence near
saturation.

The theoretical objection is that using a linear power of the percolation argument
makes that factor similar to a mixing model result. Mixing models derive ultimately
from effects of volume averaging in heterogeneous media for which distinct con-
stituents have differing conductivities. But we are already isolating the chief effect
of the saturation dependence of the individual conductances when we concentrate
on the effects of the critical pendular structures. We may multiply a topological
effect on conductivity by a geometrical effect (Eq. (7.5)), as long as the two are
independent. But the product of two geometrical effects could only make sense in a
one-dimensional system where conductances add reciprocally. We conclude that so
much of the regime of interest in the thermal conductivity is so far from the percola-
tion threshold that the asymptotic results from percolation theory cannot be applied.
Still, speaking practically rather than theoretically, the effective power of the per-
colation argument drops from 2 towards zero as p = 1 is approached, and using an
effective μ = 1 over the whole range of saturations give fair results.

If we consider thermal conductivity only in dry soils, we note a similarity to the
electrical conductivity of saturated soils (main contribution from fluid phase): both
appear proportional to the square of the relevant volume fraction. While Eq. (7.5)
is much less accurate than corresponding equations for the electrical conductivity
in terms of saturation (Chap. 6), in order to generate the corresponding property
dependence under dry conditions, it must be evaluated in a limit that is as close to
the percolation threshold as it is possible to reach, and under conditions that make
its chief defects negligible. Equation (6.22) for the electrical conductivity, on the
other hand, while much more accurate, must be evaluated at the limit furthest from
the percolation threshold (Eq. (6.28)), and these two cases appear to have similar
uncertainties.

To summarize: the percolation scaling result (Eq. (7.4)) requires a near coinci-
dence of solid and wetting phase conductivities, it can only be extended to wet con-
ditions by using an effective-medium result, and it neglects effects of pendular struc-
tures. Meanwhile, the sublinear power result (Eq. (7.2)) requires solid particles that
can be represented as (intact or deformed) spheres. So there appears to be no simple
and general analysis of the thermal conductivity that would be useful for prediction.
In the 2nd edition of this book we were not hopeful about finding a straightforward
conceptual resolution of the problems presented here. Now, however, it appears that
the problem has a conceptual basis for understanding, and simply awaits further
quantitative analysis before we can consider it fully understood.

It turns out that a very small modification of Eq. (7.5) makes it perform very
well indeed over the entire range of saturations for all soils investigated. These
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include thermal conductivity data of Lu et al. [64], and the saturation-dependent
phenomenology of Campbell [6], for which the dry limit was mentioned below
Eq. (7.4). It should be noted that the latter represents a smoothing of experimen-
tal error, and may not be as reliable a comparison, though it simultaneously implies
a much wider relevance of the present results. The specific modification of Eq. (7.5)
is to reduce the power of the factor (1 − φ + θ ) from 2 to 1 (making it a linear
function). This modification should not really be applied over the entire range of
saturations; moreover it would ruin the approximate correlation of the thermal con-
ductivity under purely dry conditions with the square of the density. However, as
noted in Chap. 2, precisely this function should be adopted at values of p > 0.8,
which, in Fig. 7.17b, occurs at θ = 0.25, but in Fig. 7.17a occurs at moisture con-
tents between 0.2 and 0.28. In fact, probably because of the dominant role of the
pendular structures over most of the range where the quadratic result would be pre-
ferred, the linear result describes the thermal conductivity well (Fig. 7.17b) over
the entire range of moisture contents, and the parameters extracted mostly make as
much sense as those extracted from a comparison with Eq. (7.5) (Table 7.3). The
one exception is the total amount of water in pendular structures which typically
yields about 10 % of the porosity or less. But in the case that the quadratic depen-
dence is replaced by the linear dependence, this parameter on some occasions takes
on much larger values, up to 40 % of the porosity. However, this may not be as seri-
ous as it seems; the 1/4 power factor from the pendular structures rises very rapidly
at first and more slowly at higher moisture contents, making its contribution nearly
constant. Thus the fit does not depend sensitively on the value of θ chosen at which
the pendular structures no longer increase in size, making it possible to decrease the
agreement with experiment rather minimally at the cost of a significant decrease in
pendular water. In other cases the ratios of the parameters are consistent and not too
different from Eq. (7.5) (Table 7.3). The threshold water fraction is likely largely
stored in films. The sum of the threshold water fraction and the amount in pendu-
lar structures is 0.09 (silty clay loam) and 0.14 (silt loam) in the fits of the data of
Ren using Eq. (7.5). These values are similar to the critical volume fraction, 0.11,
in a silt loam in the Hanford site as well as to characteristic values for the threshold
for diffusion in silt loams of 0.12 [73]. The linear fit leads to 0.29 and 0.25 for the
water fractions of the silty clay loam and the silt loam, respectively. These values
are upwards of 50 % of the porosity. Statistical comparisons always favor the lin-
ear version of the topological factor, because the quadratic version overestimates
λ as saturation is approached. However, conceptually we should imagine a cross-
over from a quadratic dependence for 1 − φ + θ < 0.8 to a linear dependence near
saturation.

Since the percolation scaling result (Eq. (7.4)) assumes a near coincidence of
solid and wetting phase conductivities, can only be extended to saturated conditions
by using an effective-medium result, and neglects possible effects of pendular struc-
tures, while reliability of the sublinear power result (Eq. (7.5)) requires existence
of particles that can at least be represented as deformed spheres, we originally (in
the second edition of this book) were not particularly hopeful about finding a rel-
atively straightforward conceptual resolution of the problems presented here. Now,
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however, it looks as though the problem has at least a firm conceptual basis for un-
derstanding, and is, at most, awaiting some advances in quantitative analysis before
we can consider it fully understood.

7.3 Solute and Gas Diffusion

This section is greatly altered from earlier editions. Previously we stated that data
from solute and gas diffusion did not obey the precise forms of the percolation
formulations in Chap. 2. Since then we have expanded the discussion in Chap. 2
along the lines of Havlin and ben-Avraham [35], and analyzed much more data. The
result is that it appears that the predicted universal scaling is generally observed,
although we cannot simply ignore the data originally presented.

Our earlier theoretical discussion was largely based on numerical simulations
of Ewing and Horton [28], plus some unpublished simulations. These simulations
were organized according to the practices in soil physics. A simple cubic network
model was employed, and saturated conditions with a variable pore connectivity
assumed. Pruning (cutting) bonds reduced the porosity. The diffusion coefficient
was found through particle tracking: random walkers were released on one side of a
system of linear dimension x, and removed upon arrival at the other side, with their
time of passage recorded. For any given porosity the effective diffusion coefficient
was measured as a function of length, and finite-size scaling techniques were then
applied to find the dependence on porosity. The authors expressed the diffusion
coefficient Dpm of an inert conservative solute in the porous medium in terms of its
value Dw in water:

Dpm

Dwφ
≡ Γ −1 (7.6)

and used the simulations to evaluate the quotient Γ −1, known in the porous me-
dia community as the tortuosity. The authors found that this tortuosity had length
dependence

Γ ∝ x1.11 (7.7)

Hunt and Ewing [45] then used the physical arguments from Sect. 2.4 to deduce that

Γ ∝ (p − pc)
−1.11ν, (7.8)

the result that would obtain from finite-size scaling. For continuum percolation
problems which use moisture content θ rather than p as the fundamental variable,
make the substitution (p − pc) → (θ − θt).

Consider the factor φ in the denominator of the left-hand side of Eq. (7.6). Hunt
and Ewing [45] argued that, for unsaturated problems, φ should be replaced by θ .
With these substitutions, one has

Dpm

Dw

= θ(θ − θt)
0.98 (7.9)
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Fig. 7.18 Reprinted with
permission from Moldrup
et al. [73]. The ratio
Dpm/Dwθ is plotted as a
function of moisture content.
Note from the experimental
results for different soils that
this ratio gives parallel lines
of slope 1; the intercepts yield
the critical moisture content
for percolation, θt

This equation was also reported by Moldrup et al. [73] (Fig. 7.18), except that the
reported power was 1 instead of 0.98, and a numerical prefactor of 1.1 was given.
Note that what Ewing and Horton [28] called tortuosity is called “impedance fac-
tor” by Moldrup et al. [73], in which paper Fig. 7.18 first appeared. Because the
values of θt (the threshold moisture content) obtained from the fit to Eq. (7.9) had a
systematic dependence on the soil’s specific surface area, and because that depen-
dence could be understood in terms of the presence of water films (see Chap. 8),
we leant greater credence to this analysis than it deserved. It was noted in previous
editions that such a conclusion does lead to problems in the details of understanding
the processes of solute and gas diffusion vis-à-vis electrical conduction. However, it
turns out that Eq. (7.9) is, under typical conditions, virtually indistinguishable from
the most useful form of a percolation prediction; this means that we can change our
perspective without losing the specific advantages of the previous analyses.

Universal scaling of the diffusion constant can be written in the following forms,
depending on whether solutes in water, or gases in air are considered:

Dpm

Dw

=
[
θ − θt

1 − θt

]μ

or
Dpm

Dg

=
[

ε − εt

1 − εt

]μ

(7.10)

This particular normalization is chosen because it forces compatibility of the right-
hand side of the equation with the left-hand side in the limit φ → 1, θ → φ, (ε → φ),
for which the diffusion constant is measured relative to a medium that has no solid
volume fraction neglecting the cross-over to linear behavior of effective-medium
theory. The advantage of using this normalization is that knowledge of a single
system-specific parameter (θt or εt), plus a single measurement at the wet (or dry)
end, allows prediction of the relevant diffusion constant over the entire range of
saturations.

Now compare Eq. (7.10) with form of Eq. (7.9) appropriate for solute diffusion.
When the threshold moisture content is 10 % of the porosity (as is frequently the
case) and for a typical value of the porosity (φ = 0.4), Eq. (7.10) reduces to

Dpm

Dw

= 1.09θ
(
θ − θ ′

t

) + 0.0017
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provided the given substitutions are made only in the normalization constant and
in the term θ2

t . θ ′
t = 2θt here should be understood to have the numerical value of

θt in Eq. (7.9), but to equal twice the actual threshold moisture content. Moldrup
et al. [73] reported θ ′

t values as high as 0.24, so dividing them by 2 gives much more
reasonable values. Since the numerical prefactor differs only by 1 % from the ex-
perimental phenomenology (Eq. (7.9) with prefactor 1.1), and the additive constant
is close to zero, we can see that the Moldrup equation (our Eq. (7.9)) expresses to
a very good approximation the result from universal scaling. Reanalysis of the data
in Fig. 7.18 would show that it is consistent with Eq. (7.10) as well. The apparent
threshold moisture content would still have the same dependence on specific sur-
face area as the published result, but its numerical prefactor would be reduced by a
factor 2.

When we examine data for gas diffusion, we find that they also follow universal
scaling. As noted in Chap. 2, universal scaling of the diffusion constant is expected
in finite-sized systems, for which restriction of the diffusing solute (gas) to the in-
finite cluster of water-filled (air-filled) pores is not required. Because Eq. (7.9) is
so close to universal scaling, and because the gas diffusion appears to follow uni-
versal scaling, we argue that the better choice for solute diffusion is likely also to
be universal scaling. For this reason it was necessary to change our presentation of
diffusion properties in porous media.

Several experiments [11, 12, 15, 16] are summarized in Fig. 7.19, taken from Hu
et al. [39]. Obviously for θ � θt, Eq. (7.9) and universal scaling (Eq. (7.10)) both
approach Dpm/Dw ≈ θ2. Additionally, some data sets diminish much more rapidly
than θ2 at small values of θ , consistent with either the critical behavior of Eq. (7.8)
or universal scaling near θt. Figure 7.20 shows a set of data reported in Hu and
Wang [38], most of which are compatible with the θ2 behavior, although the “silica
sand” shows clear evidence of a finite threshold. The “crushed tuff duplicate,” on
the other hand, suggests an approach to a non-zero background diffusion constant,
which might represent the ability of solute diffusion through water films to give
an alternate diffusion mechanism. These data do not show evidence of a non-zero
θt, but are clearly consistent with θ2 as the dependence on the moisture content.
Figure 7.21 (which includes data from Hu and Wang [38] not published in Fig. 7.20,
but appearing in Fig. 7.19) allows a simple power-law fit of the data from nearly 50
years of experiments including 606 individual measurements [2, 3, 11, 15, 16, 34,
50, 54, 66, 80, 81, 85, 86, 88, 89, 91, 94, 108]. The fitted exponent of 1.97 compares
well with the universal scaling value of 2. Seven individual measurements showed
evidence of a finite threshold with significant deviations below the regression, but
these data had little effect on the regression.

In the case of gas diffusion, previous editions of this book had reference only
to the data of Werner et al. [109], who analyzed 81 published measurements of
gas-phase diffusion, both in situ and in laboratory measurements, for which the air
filled porosity and the total porosity were available. The data were compared with
several formulations in the literature, including Millington and Quirk [68], Currie
[19], Sallam et al. [90], and Moldrup et al. [71], using standard RMSE. Werner et al.
[109] stated, “The Moldrup relationship, Dpm/Dg = ε2.5/φ, originally proposed
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Fig. 7.19 After Hu et al. [39]. The first two data sets are from that work. Note that several of the
data sets drop rapidly between 1 % and 10 % saturation, consistent with a critical saturation in
that range of values. For large θ , Eq. (6.8) (now Eq. (7.10)) yields the asymptotic limit θ1.98 ≈ θ2.
The CRWMS fit has a slope of 1.9. CRWMS refers to Civilian Radioactive Waste Management
Systems

for sieved and repacked soils, gave the best predictions of several porosity-based
relationships, but the relative deviation between observed and predicted Dpm can be
substantial.” In previous editions we adapted Eq. (7.9) to generate a similar result to
“the Moldrup relationship.” We now believe that Eq. (7.9) was the incorrect starting
point and that universal scaling, including a threshold air content, is appropriate.
In that case it is logical to assume that the fundamental information missing in this
data set is εt, and that knowledge of the variability of εt would allow a much more
accurate prediction of Dpm. Omitting the threshold tends to raise the value of the
fitted exponent, because the increase in slope with the approach to the threshold
air content is interpreted as a larger power. The conclusions of Werner et al. [109]
therefore cannot be used to exclude the relevance of universal percolation.

More importantly, we now have analyzed the following data sets from publica-
tions of the Moldrup group, Moldrup et al. [71, 72, 74–78], which include roughly
a factor 10 more data points than Werner et al. [109]. We analyzed these data in
exactly the same way as with the air permeability (e.g., Fig. 7.10). In particular,
we tested the validity of Eq. (6.9) by seeking a value of the critical air fraction for
percolation which generated a high quality fit with a power near 2. Eight of the bet-
ter fits to Eq. (7.10) are shown in Fig. 7.22. Here the ideal result would of course
be y = x2 with an R2 of 1. Many of the individual data sets come very close to
this result. In fact, that so many individual experiments yield a numerical prefactor
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Fig. 7.20 After Hu and Wang [38]. Here the comparison with Eq. (7.9) (the dashed line) is given
under the assumption that θt = 0, which makes the predictions from Eq. (7.9) virtually indistin-
guishable from those of Eq. (7.10)

so close to 1, is remarkable, as once again we would not have expected such close
agreement with percolation scaling so far from the threshold (at φ = 1[!], which is
even further away from the threshold than for the air permeability, where the nor-
malization was taken at ε = φ). After analysis of the individual data sets we plotted
all the data on normalized axes (Fig. 7.23). Whereas the analysis of the air perme-
ability generated y = 0.96x2.03 with an R2 of 0.97, the set of all the gas diffusion
data yields y = 1.35x2.01 with an R2 value of 0.95. Although the numerical prefac-
tor, 1.35, is quite large relative to our naïve expectations, we can show that this value
is nearly what we anticipate. Consider again Fig. 2.2, which employs a critical vol-
ume fraction of 0.1φ for the case φ = 1. Now we substitute the linear dependence
of Eq. (2.20) for our quadratic dependence in Eq. (7.10). Forcing the quadratic uni-
versal dependence near the threshold to be compatible with the linear dependence
near p = 1 would cause the continuation of the quadratic dependence to that limit
to produce too large an air permeability value by a factor 1.29. Thus, normalization
to the actual air permeability, which is a factor 1.29 smaller, makes the experimental
values exceed the predicted ones by the same factor. It should also be kept in mind
that the portion of the curve with ε > 0.8 is, as far as we know, never seen. In fact,
the extracted numerical constant is 1.35, ca. 5 % larger than our prediction. Conse-
quently, analysis of scaling far from the percolation threshold will allow predictions
for gas diffusion to be just as accurate as those for the air permeability.
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Fig. 7.21 Compilation of data (including sources not published in Figs. 7.19 and 7.20) from Hu
and Wang [38] and Hu et al. [39]. Fitted slope of 1.97 compares to 2.0 predicted by Eq. (7.10)
with θt = 0. The data from Conca and Wright [16] were not given in a form normalized to water,
so their data were graphically extrapolated to 100 % water content with the intercept fitted, which
was then used to normalize that data. Then the normalized data from Conca and Wright [16] were
incorporated with the following sets: Patil et al. [81], Graham-Bryce [34], Römkens and Bruce
[86], Warncke and Barber [108], Sadeghi et al. [89], Barraclough and Nye [2], Mehta et al. [66],
Barraclough and Tinker [3], Porter et al. [85], Jurinak et al. [50], Rowell et al. [88], So and Nye
[94], Olesen and Kemper [80], Conca [15]; Olesen et al. [80], Schaefer et al. [91], and Klute and
Letey [54]. The CRWMS and Hu data sets are not included because they show signs of non-zero
θt (see Fig. 7.19) as well as not being normalized to diffusion in water

The value of this analysis is that, if it is possible to predict the threshold air
content, one can predict the entire range of gas diffusion values without any mea-
surement of the gas diffusion constant within the porous medium. Since we showed
that one can predict the air permeability threshold reasonably well from the SWRC,
and since the values of this threshold for gas diffusion are obviously also very small
fractions of the porosity, we predict that the two threshold values will be the same for
any given soil (the loss of air-phase connectivity should eliminate gas diffusion and
gas flow at the same air-filled porosity value), and suggest reliance on the SWRC
for estimating the threshold. This means that measurement of the SWRC, together
with a single measurement of the air permeability, will be sufficient to predict not
only the saturation dependence of the air permeability, but that of gas diffusion as
well.

For perfectly dry conditions and in the case that the threshold air content is very
small, Eq. (7.10) for the gas diffusion yields a proportionality to φ2. Verboven et
al. [107] report results for the mean gas diffusion constants of apples and pears as
well as their mean porosities. These data are generally compatible with a quadratic
dependence of the gas diffusion constant on porosity. It is not really significant to
determine the exact behavior from the published data, because they consist only of
mean values and standard deviations of porosity and diffusion constants. We have
tried to analyze the unpublished data (thanks to Dr. Verboven for sharing it), but
we reached no definite conclusions. Apparently the samples from which the poros-
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Fig. 7.22 Comparisons of gas diffusion data from various Moldrup data sets with the prediction
from Eq. (7.10), a normalized universal scaling result. While R2 values and the values of the expo-
nent were individually as close to 1 and to 2, respectively, as for the air permeability, the numerical
prefactor tended to deviate more from the ideal value of 1 than it did for the air permeability. This
greater discrepancy is a result of the normalization criterion, which is applied at φ = 1, rather than
at the porosity of the particular material, and thus requires the validity of the percolation formula-
tion at a considerably greater distance from the percolation threshold
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Fig. 7.22 (Continued)

Fig. 7.23 Compilation of all
the gas diffusion data from
the 8 Moldrup data sets,
clearly showing the
consistency with universal
scaling

ity values were extracted are not generally the same samples as those on which the
diffusion constant was measured,so no unique relationship between porosity and
diffusion can be extracted. Nevertheless we tried two different schemes to associate
the porosity values with the diffusion data: scheme (1) generated a power law rela-
tionship of Dg ∝ φ2.05, while scheme (2) generated Dg ∝ φ2.26; both had R2 values
of about 0.85. Thus there is a tantalizing suggestion that the same simple scaling
behavior for diffusion describes gas diffusion data from living organisms as well as
solute diffusion data from soils.

7.4 Electrical Conductivity of Hydrated Clay Minerals

This section applies the techniques of critical path analysis for hopping conduction
to the electrical conductivity σ of hydrated clay minerals. Most publications on the
subject treat only the dc conductivity; experimental measurements of that quantity
are made at frequencies ω that are assumed low enough to exclude ac conduction
processes. This assumption may not be valid in practice. The ac conduction pro-
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cesses are also typically considered to have a different source from the dc conduc-
tion, another assumption that appears to be invalid in light of the evidence presented
in Hunt et al. [46]. The following discussion aims to clarify these topics.

The dc electrical conductivity of a porous medium is usually considered related
to its water content through two terms. Equation (6.35) is the form traditionally used
in soil science, but we will use Eq. (6.36) because of its superior physical interpre-
tation. The first term, σs, gives a surface or solid contribution, and the second term
represents the contribution of water in the pore space. The solid contribution may
dominate the medium’s bulk electrical conductivity at low water contents [18, 61].
The solid contribution arises especially from water associated with clay surfaces,
and the specific physical processes giving rise to this electrical conductivity is an
interesting and long-standing problem. There is as yet no consensus even as to what
charge carriers give rise to the conductivity, even though it is clear that the con-
duction proceeds through the near-surface water phase. Both ionic conduction and
proton transfer have been suggested. Conductivity diminishes with increasing cation
charge, suggesting that the conducting entities are actually protons [46], because the
greater Coulomb repulsion impedes the charge transport more. This argument would
be qualitatively similar even if the moving charges were the ions, but the coupling
of the charge and the applied field would have the opposite tendency because larger
charges lead to larger changes in electric field potential energy, and thus larger cur-
rents. Nevertheless, the increase in conductivity due to the coupling with the field
is linear in the charge, whereas the linear increase in Coulomb repulsion energy ap-
pears in an exponential (as an activation energy), so it is not a priori obvious whether
ionic transport should yield a conductivity which increases with ionic charge.

The electrical conductivity of clay minerals is frequency-dependent down to
rather low frequencies. This frequency dependence suggests the important role of
disorder: the electrical conductivity of an ordered system is frequency-independent
at frequencies as high as 1012 Hz and as low as 10−2 Hz or lower. The subject of
the ac conductivity of non-crystalline materials, however, is part of a much broader
discussion, in which critical path analysis also plays a part.

In the 1970s Andrew Jonscher wrote several articles (e.g., Jonscher [49]) point-
ing out the quasi-universal behavior of the ac electrical conductivity σ(ω) of non-
crystalline solids. The substances included β-alumina, amorphous semiconductors,
cellulose, humidified clays, and many others. In most of these systems, σ(ω) ap-
peared to follow a sublinear power law σ(ω) ∝ ωs (with 0 < s < 1) over many
decades of frequency. The existence of so many similar power laws triggered many
investigations. Some key questions were asked: Is the behavior truly universal? If
so, how is it best described? What could cause the same behavior in so many differ-
ent systems? If the behavior is not universal, what underlying physical tendencies
producing similar behavior could be found in so many systems? The discussion
continues today with no sign of a consensus emerging.

For convenience we separate physical treatments of ac conduction in non-
crystalline solids into three classes: (1) effects of energy and spatial disorder on
hopping conduction, (2) effects of “dynamic” Coulomb interactions on hopping con-
duction, and (3) hopping conduction on fractal structures. The first class is treated
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using critical path analysis or effective medium theories, and the third is often re-
lated to percolation scaling ideas. The second class will not be treated here, as its
integration into the present discussion would require considerable background not
yet presented here. We will concentrate on the first class, because it seems implausi-
ble that fractal structures are causative in so many cases, especially as most systems
do not appear to be near a structural percolation threshold. Moreover, in Chap. 5
we showed how to calculate the dc conductivity of disordered systems using criti-
cal path analysis, and calculations of the ac conductivity have an analogous basis.
Finally, one of us (AGH) has published on the ac conductivity of clay minerals,
including a detailed analysis in terms of critical path analysis [46].

Even within the first class (effects of energy and spatial disorder on hopping con-
duction), there is still uncertainty. The effects of Coulomb interactions between hop-
ping charges cannot be completely neglected in the model we developed. Although
theory is relatively mature for “non-interacting” systems, controversy remains in
cases where the hopping motions of the individual charge carriers are strongly cor-
related [32, 49]. In Hunt et al. [46] such interactions were treated in a somewhat
heuristic way. Also, while the dependence of σ(ω) on frequency ω is classical per-
colation [43], the amplitude of the variability is only about two orders of magnitude.
This smaller amplitude means that analysis in terms of effective medium theories or
even mixing theories could also be useful, at least for the typical temperatures in-
vestigated.

The ac conductivity is related to the time dependence of the time derivative of the
electrical polarization of a system. This is because a temporally changing dipole mo-
ment (such as produced by a spatial rotation) is equivalent to charge transport. How-
ever, charge transport in a capacitive medium (hopping conduction) over sufficiently
small time and space intervals is considerably enhanced over steady-state current:
thus ac conductivity is distinct from dc. The polarizability of a medium is described
using the frequency-dependent dielectric permittivity ε(ω). As a consequence of
the physical relationship between a time-changing polarization and the electrical
current, σ(ω) in Fourier space is given by the sum of iωε(ω) (where i = √−1) and
the dc conductivity σ(0). Thus the ac conductivity relates to a quantity, the polariza-
tion, which may be non-zero even in the absence of mobile charges. This explains
the claim of many researchers (e.g., [95]) that the only process which can produce
a non-vanishing ac conductivity is the rotation of a molecular dipole. But this is not
the only such physical process! In fact, charges hopping through a disordered land-
scape (either r-percolation, E-percolation, or r–E percolation; Chap. 5) produce
a time-dependent polarization, yielding the kind of σ(ω) behavior that is actually
observed.

Before addressing the physics, we caution the reader that many phenomenolog-
ical approaches have been used to fit the data, and arguments continue over which
is the most nearly appropriate. The most commonly used phenomenology for ac
conductivity is a power law. For dielectric relaxation one finds a large number
of phenomenologies (Cole-Cole, Cole-Davidson, Havriliak-Negami, Kohlrausch-
Williams-Watts; see references at Cole [13], Davidson [21], Havriliak and Negami
[36], Kohlrausch [55, 56], Williams [110]), but none of these phenomenologies
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Fig. 7.24 Percolation theoretical calculations of ac electrical conductivity for disordered media
at 9 different temperatures. Note that (1) the dc conductivity is a strong function of temperature,
(2) the high frequency ac conductivity is nearly independent of temperature, (3) the ac conductivity
is approximately a sublinear power of the frequency

works for the entire frequency range (as wide as 10−2 Hz to 1012 Hz) in any material
(e.g., [23]). So perhaps it is not productive to try to derive such a “universal” result.
We suggest that it is more important to derive a result which produces something
similar to the apparent power-law behavior observed [49], as well as the dc conduc-
tivity and a characteristic time scale. Figure 7.24 shows a typical temperature and
frequency dependence of the conductivity when it is described in percolation theory.

7.4.1 r-Percolation and E-Percolation

Hunt [40] derived a result for the ac conductivity of disordered materials, using what
could be called E-percolation in analogy with the terminology of Chap. 5. Here the
energy barriers between sites are random variables, but there is no relevant disorder
in site separation: either the sites have equal separation, or the equivalent resistances
between sites have insignificant dependence on that variable:

σ(ω) − σ(0) ≈ σ(0)

[
ω

ωc

]s

ω > ωc (7.11)

where

σ(0) ∝ ωc ∝ exp

[

− Ea

kBT

]

and 1 − s ∝ kT

Ea
(7.12)

In these equations kB is the Boltzmann constant, T the absolute temperature, σ(0)

the electrical conductivity at zero frequency (i.e., the dc conductivity), and ωc =
νph exp(−Ea/kBT ) is the critical frequency. νph, called the phonon frequency, is a
vibrational frequency, and Ea is an activation energy. Specifically, Ea is the smallest
possible value of the largest activation energy on the transport path, the highest
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unavoidable activation energy barrier [26]; it thus plays the part of a bottleneck
resistance. General features of Eq. (7.11) and Eq. (7.12) have been verified in a
wide variety of systems.

The dc conductivity given by Eq. (7.12) varies strongly with T . According
to theory, as T diminishes the dc conductivity diminishes exponentially, but the
high frequency ac conductivity scarcely changes. The relationship 1 − s ∝ kT /Ea
(Eq. (7.12)) arises from the requirement that in the high frequency limit, the re-
sults for different temperatures must approach the same limiting conductivity value
(Fig. 7.13). The same results are obtained for increasing Ea at a constant tempera-
ture, which is compatible with the physical experiments on smectite clays that were
performed on systems with diminishing water content. Such curves are shown for
Mg-otay smectite clay in Fig. 7.14 [62, 63]. Similar frequency-dependent conduc-
tivity was also seen in Ca-, Mg-, K-, and Na-saturated hectorite, otay, SPV, and
IMV smectites [62, 63], and also in Na- and Li-saturated smectites [4], so the re-
sults of Fig. 7.14 are rather general. Notice the strong similarity between Figs. 7.13
and 7.14.

Here we discuss the general physics behind Eq. (7.11) and Eq. (7.12), though
without deriving them. We also present experimental data supporting the validity
of these equations. We see that Ea calculated from critical path analysis appears
reasonable for most of the systems investigated.

To better understand ac conduction, consider the r-percolation system described
in Sect. 5.1. This r-percolation is analogous to the E-percolation described above.
Electrons sit at sites which all have the same energy, but are separated by vary-
ing distances. Even in the absence of an electric field, electrons occasionally hop
from one site to another. The rate at which an electron may hop from site i to site
j is Γij = νph exp[−2rij /a] ≈ τ−1

ij , where the relaxation time representation, τij ,
makes explicit contact with Chap. 5 notation Here the phonon frequency, νph, is of-
ten around 1012 Hz, but closer to 108 Hz in smectites; this rate expression is a chief
input into the resistance value Rij given in Chaps. 2 and 5. Now impose an electric
field in (say) the positive x direction. Electrons will now tend to hop more fre-
quently in the negative x direction than in any other direction, because that reduces
their electrical potential energy. As long as the electric field is small, that tendency
is slight, and the system is said to be in the Ohmic regime: the response to the field
is linearly proportional to the strength of the field. But suppose that the electric field
has been in this orientation only a very short time t ∝ ν−1

ph = ω−1: which electrons
will respond? Clearly those for which the typical hopping time (the inverse of the
transition rate) is not greater than the time that the electric field has been in its new
orientation (making rij ≈ a). Causality (the fundamental precept that causes pre-
cede effects) allows a proof that in fact the electrons that contribute to the in-phase
(real) part of the complex conductivity have response times approximately equal to
the inverse of the frequency of the applied field, while those that respond much more
rapidly contribute chiefly to the imaginary part. The electrons responding in phase
with the field have a velocity v = a/t , or v = aνph. This velocity value is indepen-
dent of the temperature, and because electrical conductivity is nqev/Ξ (for n the
volume concentration of mobile charges, qe their charge, v their velocity, and Ξ
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Fig. 7.25 AC conductivity of
smectite clay minerals. In this
figure, the dc conductivity
increases more rapidly with
increasing water content than
does the high frequency ac
conductivity (Data from
[62, 63])

the electric field), this velocity tends to fix the ac conductivity in the high frequency
limit.

Now consider the ac conductivity as a function of frequency, ω. A direct analogy
exists between ω and p: there is a critical frequency ωc analogous to pc. In partic-
ular, changing the frequency can effectively sweep a system through a percolation
transition.

The electron jumps that dominate are those with characteristic times t approx-
imately equal to the time the electrical field has been in place, however, t ≈ ω−1

and v ≈ rijω. The exponential dependence of Γij on rij makes the dependence of
rij on ω logarithmic, justifying the statement that the typical distance rij increases
only slightly with diminishing frequency. Thus the velocity of the hopping charges
becomes, in r-percolation, a sublinear function of the frequency. While the hop-
ping distances vary only slightly with frequency in r-percolation, they do not vary
at all in E-percolation. In E-percolation, v = 〈r〉ω, where 〈r〉 is a typical hopping
distance. However, the number of electrons that can respond in time with the field
is almost always a diminishing function of frequency, making the conductivity a
sublinear function of the frequency. Meanwhile, because it is based on dividing the
complex conductivity by i, it is the imaginary (out of phase) part of the dielectric
permittivity at frequency ω which is dominantly influenced by hopping transitions
with that characteristic rate. This completes an understanding that is based on the
treatment of individual electrons, independent of each other [82, 83].

For high frequencies, only the fastest-responding electrons can adjust their posi-
tions (and thus their potential energies with respect to the external field) fast enough
to hop. As the frequency decreases, more electrons can respond, and the respond-
ing electrons begin to cover overlapping paths. When the frequency is dropped
sufficiently that the overlapping paths percolate, the ac conductivity is dominated
by the same resistive process that controls the dc conductivity: no connections
are through pairs with slower rates than this particular Γ . The critical frequency,
ωc = νph exp[−Eac/kT ], is proportional to the critical rate Γc, and the critical resis-
tance is proportional to the inverse of this critical rate. As a result, the ac conductiv-
ity at a frequency proportional to the dc conductivity is approximately equal to the
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dc conductivity. This argument is based on the relevance of critical path analysis to
hopping conduction in a disordered system. If the ac conductivity can be approxi-
mated by a power law in frequency, Eq. (7.11) and Eq. (7.12) must follow. In the
case of hopping conduction in clay minerals, critical path analysis implies that both
the dc and the ac conductivity should be controlled by the same rate-limiting pro-
cess; thus σ(0) ∝ ωc and both of these quantities have the same activation energy
Ea. In fact this is what is observed, and it is incompatible with conduction via ro-
tating dipoles: there is no reason why the hopping conduction energy barriers (if
they were associated with rotational motion) would have the same value as those
encountered by particles in translational motion.

7.4.2 Percolation Calculation of Ea

Here we show that a percolation calculation of Ea leads to reasonable results without
use of adjustable parameters.

Hunt et al. [46] used percolation theory at the molecular level to find the principal
energy barrier limiting charge transport, and hence the dc conductivity in humified
mono-ionic smectite clays. The activation energy was assumed due to Coulomb
energy barriers from counterions in the vicinity of the path of the hopping charges,
themselves believed to be protons. The measured electrical conductivities were con-
sistent with proton hopping in a maximum interlayer spacing above a threshold
water content, plus a constant term apparently due to hopping along external clay
surfaces. The basic physical interpretations were that (1) a minimum water layer
thickness is required for protons hopping along internal surfaces to effectively avoid
the vicinity of such counterions, and (2) it takes considerably less water along exter-
nal surfaces than along internal surfaces for protons to avoid the clay counterions.
This interpretation is consistent with previous conclusions of Laird [59] that water
along external surfaces tends to be concentrated in the vicinity of counterions.

Consider the possible charge pathways through the humified smectite clay
(Fig. 7.26). Assume that proton hopping is the mechanism by which water transfers
charge. This may initially seem implausible, because in neutral water at chemical
equilibrium the concentration of protons (H+ ions) is 10−7 M, too small to produce
the conductivity observed. But chemical equilibrium can be compatible with a high
conductivity if individual proton hops are highly correlated, such that as one proton
vacates a given site, another proton moves into the now-vacant position. This inter-
pretation allows transport to involve more protons than are actually free at any given
moment, and applies equally to water in smectite clays. In such an interpretation the
reduction in conductivity with decreasing number of the water layers relates to the
presence of Coulombic energy barriers produced by counterions near the interior
clay surfaces. These counterions produce a rough electrical potential with fluctua-
tions that diminish with increasing distance from the surface. Closer to the surface,
the higher potential energy barriers generate a greater resistance to proton hopping.

We thus have a problem of correlated proton hopping in a relatively slowly vary-
ing Coulombic potential (because the typical charge separation is greater than the
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Fig. 7.26 Possible pathways
for charge transport in
smectite clay minerals
(from [46])

separation of the water molecules). But the rate-limiting location on any given path
is the one which is slowest (i.e., has the highest energy barrier; [25]), while the most
important pathways are those with the fastest effective hopping rate—that is, the
pathways along which the greatest energy barrier is small.

Dyre [25] expressed the idea of a limiting barrier height in terms of an effective-
medium theoretical description, but the concept was formulated in the context of
percolation theory. Start with the activation energy of the dc conductivity. Assume
that the negative charge on the basal surfaces of a 2:1 phyllosilicate (e.g., smectite) is
located in basal oxygen atoms that are proximal to sites of isomorphic substitution.
The counter positive charges are associated with the exchangeable cations in the
interlayers. Although these exchangeable cations are mobile, at any given instant
they tend to be located as close as possible to the negative surface charge sites, and
as far as possible from each other. Thus the spatial distribution of the interlayer
cations is determined by the distribution of negative surface charges. The charge
of the cations is qe (for q the valance of an individual cation, and e the protonic
charge). The charge sites due to interlayer cations are separated on the clay layer
surface by some typical distance, denoted l (see Fig. 7.26). Within the water, the
potential due to a single cation is not a “naked” potential; it is reduced through
the dielectric properties of the water. The energy of interaction of a charge e (the
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protonic charge) and a single cation charge qe, separated by a distance r , is then

E = e2q

4πε0εwr
(7.13)

This energy of interaction is related to the activation energy of the hopping con-
duction, Ea, as will be shown. Consider a problem in two dimensions (2d) with
no significant water thickness (Fig. 7.26a). A hopping charge must normally be
brought within a distance d = l/2 of a cation of charge qe in order to find a
path through the system. In three dimensions (represented in cross-sections in
Fig. 7.26a and Fig. 7.26b), with water thickness wr0 (for w the number of water
layers, and r0 ≈ 0.25 nm the thickness of one water layer), this distance becomes
d = [(l/2)2 + w2r2

0 ]1/2. However, for smectites dominated by octahedral charges at
high water contents, the distance may become d = [(l/2)2 + 1/4(w2r2

0 )]1/2, espe-
cially around divalent cations. We ignore this alternative, which would result in an
increasing (rather than a decreasing) activation energy with increasing water con-
tent. In a neutral medium with some disorder in the position of the charges, the
average interaction energy of a charge is zero. If, on average, a proton starts at zero
energy, then at closest approach to a counterion its total energy has increased by an
amount

Eac = qe2

4πε0εw

√
l2

4 + w2r2
0

(7.14)

Now we must consider how l depends on the concentration of cation charges, N .
In a 3D system we have l ∝ N−1/3; the 2D result (l ∝ N−1/2) may be more appro-
priate in platy systems, but it turns that the choice does not matter. Here we ignore
orientation of the clay plates, which introduces a numerical factor 1/3 for random
orientations. We find

Eac = 2qe2N1/3

4πε0εw

√
1 + 4N2/3w2r2

0

(7.15)

This Eac was our first estimate of the activation energy for the dc conductivity due
to the Coulombic repulsion of the counterions. Comparison with experimental data
(not shown), which show a strong dependence of charge mobility on water layer
thickness, indicated that Eq. (7.15) was incorrect. A Taylor series expansion in the
quantity N2/3r2

0 w2 of Eq. (7.15) shows why: the calculated Eac is almost indepen-
dent of r0w for r0w < l, producing a conductivity independent of water content.
For agreement with experiment it was necessary to modify Eq. (7.15) by dropping
the first term in the square root. Apparently (if the proposed mechanism of transport
is correct) the hopping protons cannot avoid the counterions in the plate parallel
direction, but they can in the perpendicular direction. Then we have

exp

[−Eac

kT

]

= exp

[ −qe2

4πε0εwwr0kT

]

= exp

[−0.707q

w

]

(7.16)

This last expression was written in anticipation of comparison with experiments
conducted at T = 298 K. Although using εw = 80 may underestimate Eac, consider
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the case for w = 1. The proposed mechanism of highly correlated hopping motions
would be unlikely, during any individual hop, to change the number of protons on
the water molecule nearest the counterion. One proton would simply replace an-
other at a given location. But the conduction process would require a proton to jump
between that site and a neighboring site. This means that, for the purpose of calcu-
lating a barrier height, the nearest distance of approach would be somewhat larger
than wr0, and the energy somewhat smaller. To estimate this effect, consider that
the highest energy that the proton experiences (including the Coulombic attraction
to the water molecules) is likely to occur at about half the water molecule spacing.
At this distance, the Coulombic effects due to the counterion will be reduced to
somewhere between (4/5)1/2 and 2/3—by 11 % to 33 %, depending on orientation.
This numerical uncertainty is the same magnitude that would arise from using a di-
electric permittivity of (say) 50 rather than 80, which would increase the Coulomb
interaction strength by 38 %. As a consequence we ignore these complications and
use the numerical factor of Eq. (7.16).

The pre-exponential for the conductivity was estimated from the perspective of
a 3D random resistor network (disordered medium). In such a network, the dc con-
ductivity σ(0) is given by [31, 42, 43]

σ(0) = l0

L2Rc
(7.17)

where Rc = [(e2/kT )νph exp(−Eac/kT )]−1, l0 is the linear separation of criti-
cal (bottleneck) resistances on a critical path, and L is the linear separation of
such paths. This makes L−2 the number of current-carrying paths per given cross-
sectional area; in d dimensions L−2 is replaced by L−(d−1). Right at critical perco-
lation L → ∞ [97], but when critical path analysis [31] is used to develop σdc, the
bottleneck resistance value is slightly larger than the critical value, and the value of
L is more nearly the molecular separation, as found by the optimization procedure
discussed in detail in Chap. 5. Thus L can be taken to be r0 times some numerical
constant; Hunt [43] found values between 5 and 15. In our problem, however, these
considerations do not strictly apply. The L2 is related to the dimensionality of the
optimization procedure, and would be replaced by L if the optimization were per-
formed in 2D. This is consistent with structural constraints for the 3D in the clay,
for example, a distance between proton carrying paths of (4 + w)r0, where 4 + w

is the thickness (in units of water molecule size) of a simple clay sheet. It may be
that in the plate parallel direction (Fig. 7.26) the path separation is structurally con-
trolled, and is approximately equal to l. The largest resistance values, however, will
be separated by l0 = l, when protons come into the vicinity of a counterion. Thus
the length scales in the pre-exponential are all multiples of r0 with numerical values
greater than 1. Altogether we have

σdc = e2lvph

kT Lr0(4 + w)
exp

[−Eac

kT

]

∝ e2vph

kT r0(4 + w)
exp

[−Eac

kT

]

(7.18)

The factor exp[−Eac/(kT )] is given in Eq. (7.17). The predicted dc conductivity is
compared with experimental values in Fig. 7.27.
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Fig. 7.27 Comparison of predicted and observed dc conductivity of smectite clay minerals. The
various data correspond to 4 different mineralogies, 4 different cations, and 4 different moisture
contents (from [46])

In predicting the dc conductivity σ(0), we did not assume a continuous increase
in water thickness w with θ . Rather, we assumed that the equivalent thickness of
the water layer increased by r0 every time the water content increased by a given
fraction. This is in the spirit of continuum percolation theory: until there is sufficient
water in a given layer, it does not form a continuous layer. This discretized thickness
means that protons in a given water layer cannot avoid the layer below (with its
greater proximity to counterions) until the given water layer is continuous. Since
the water tends to collect preferentially in the vicinity of counterions, the apparent
inability of protons to avoid counterions in a given water layer seems reasonable.
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Fig. 7.28 Comparison of dc
conductivity and critical
frequency for the same
systems as in Fig. 7.27 (from
Hunt et al. [46])

A major subject of the analysis in Hunt et al. [46] relates to ac conductivity
σ(ω) measurements performed by Logsdon and Laird. The advantage here is that
the frequency-dependent analysis provides a second means to check that the pre-
dicted exponential dependence of σ(0) on temperature is obeyed. We tried fitting
Eq. (7.11) and Eq. (7.12) to the experimental data by using s, ωc and σ(0) as fit-
ting parameters. Figure 7.28 shows a comparison of σ(0) and ωc, with the result
that these two quantities appear to have the same temperature dependence. Further
analysis also allowed a better check on the actual value of the phonon frequency,
νph. We found that νph ≈ 108 Hz in contrast to the usual assumption of 1012 Hz.
Since νph ≈ (k/m)1/2, with k an atomic (or molecular) spring constant and m a cor-
responding mass, this result implies that the binding in hydrated clay minerals is
about 8 orders of magnitude weaker than in, say, quartz, which seems to be a very
large contrast.

The more common use of ac conductivity measurements regards inferences of
the pore size distribution through determinations of the power s using results from
the critical frequency to infer the mechanism of conduction. It is known that, in ad-
dition to the temperature, the size of the particles in a medium can also influence
the value of the critical frequency, which translates into an influence on a relax-
ation time. Thus, a range of particle sizes in a medium would have an influence
on the power s as well. Information regarding the particle size distribution, obtain-
able in principle using non-destructive techniques, could help predict the hydraulic
conductivity. Although we have shown that it is essentially impossible to generate
information regarding the pore-size distribution from the dc electrical conductivity,
the application of the ac conductivity to this purpose has some promise. Neverthe-
less, there is a significant uncertainty to be overcome before the ac conductivity
may be used unambiguously to this purpose. Heretofore, most investigations have
assumed that the dependence of the ac conductivity on medium geometry is con-
trolled by diffusion in double layers near the surfaces of the particles. However, the
above treatment of the ac conductivity of single particles is more nearly in accord
with a surface conduction mechanism. The difference between the two treatments
lies in the dependence of the critical frequency on particle size: in the first case



7.4 Electrical Conductivity of Hydrated Clay Minerals 261

it is assumed to be proportional to the square of the particle radius, while in the
second, by virtue of its proportionality to a surface resistance value, it is propor-
tional to the first power of the particle radius. Equation (7.15), which formulates
the dc conductivity in terms of a resistance of surface water films, gives the resis-
tance as inversely proportional to the separation of maximally valued (controlling)
resistances.

Consider equidimensional particles with all sides of approximately equal length
r and a surface layer of higher conductivity of thickness �r . Along this surface
the number of maximally valued resistances would be proportional to its linear di-
mension, r , as would the equivalent resistance. The resistance, R, would also be
inversely proportional to both the surface thickness, �r , and its width, r , generating
R ≈ 1/�r . The capacitance, C, would be proportional to A/r = r2/r = r . Then
it is possible, by using τ = RC ≈ r/�r ([48], based on theoretical work of Pollak
and Pohl [84], and O’Konski [79]), to generate the linear dependence of relaxation
times on particle size.

Analysis reveals no universality in experimental results; relaxation times are of-
ten proportional to the particle size, but may be proportional to a wide range of other
powers of the particle size as well, including the quadratic dependence mentioned
as due to diffusion in double layers. The conclusion of Hunt et al. [48] was that,
in natural media at least, there was a reason to favor the surface conduction model
that traces back to O’Konski [79], at least if one allows its possible generalization to
fractal surfaces. The case of fractal surfaces would allow, in principle, the existence
of a wider range of exponent values.

In Hunt et al. [48], it was demonstrated that the ac conductivity would be propor-
tional to

ωD−2 (7.19)

for geometrical control (linear dependence on particle size) whereas the dependence
on frequency would be

ω
D−1

2 (7.20)

in the case of diffusion control (the quadratic dependence on particle size). One can
immediately see that a power of 1/2 requires a D value of 2.5 in the first case, but 2
in the second. Interestingly, using result (7.20), Lesmes and Morgan [60] obtained
different results for the fractal dimensionality of the Berea sandstone than those
obtained by optical measurements [22, 57, 101]. Lesmes and Morgan [60] obtained
2.02 ± 0.03, while the optical measurements returned values from 2.55 to 2.86.
However, use of result (7.19), would have returned the fractal dimensionality 2.51±
0.02, near the lower limit of optically determined values, probably eliminating the
perceived discrepancy.

We conclude with Figs. 7.29–7.33 that depict results from the literature illustrat-
ing the various dependences of the relaxation time on particle size. In addition to
those shown, Klein and Sill [53] reported a linear dependence.
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Fig. 7.29 The dependence of
the inverse of the relaxation
peak frequency (the
relaxation time) as a function
of the radius of the particles,
showing a quadratic
dependence. Data from [92].
The porous medium was
composed of a dilute
suspension of polystyrene
particles

It is important that the data from Fig. 7.33 need not be interpreted as supporting
a linear dependence of relaxation time on maximum water-filled pore radius. They
can also be understood as supporting a cross-over from a sub-linear to a superlinear
dependence. Given the difficulties in relating a water-retention curve to pore geom-
etry, we make no definitive claims at this time, but suggest that there is sufficient
evidence to consider the linear dependence as a viable interpretation.

7.5 Geophysical Applications

We now address two geophysical applications relating to seismic precursors in seis-
moelectric phenomena. These applications do not address whether seismic precur-
sors could be used to predict earthquakes. Rather, our incursion into the realm
of geophysics examines the implication that specific processes could explain data
which has been argued to be related to seismic processes. In each case, the ultimate

Fig. 7.30 The dependence of relaxation time on particle size. Data for soils from Titov et al. [103].
These results show a somewhat smaller power than quadratic. The data can alternatively [48] but
without much conviction (on account of the small number of data points) be interpreted as showing
a cross-over from a power of 2 at small sizes to a power of 1 at larger particle sizes
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Fig. 7.31 Data from Kemma
et al. [51], showing a more
rapid increase in relaxation
time with particle size than
either linear or quadratic

Fig. 7.32 Data from Binley
et al. [5] showing a linear
dependence of relaxation time
on particle size. The specific
surface area serves as a proxy
for an inverse pore radius.
Note that the relaxation time
is determined by a fit to a
“Cole-Cole” relaxation
function, which is a
generalization of Debye’s
exponential relaxation,
though without any consistent
physical interpretation

Fig. 7.33 Data from Breede
[7]. Note that the independent
variable here is the tension,
related to the inverse of the
largest water-filled pore size
by the capillary equation

question is whether the magnitude of the apparent precursors can be explained in a
manner consistent with theory. These examples thus hint at further possible ramifi-
cations of the present work.
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Merzer and Klemperer [67] examined the sudden increase in the low-frequency
contribution to the magnetic field 7 km from the Loma Prieta epicenter, three hours
before the earthquake. This increase was superimposed upon other changes in the
low-frequency magnetic field during the previous weeks. The authors suggested that
a plausible explanation for the increase in the magnetic field strength could be a 15-
fold increase in the electrical conductivity under saturated conditions. They gave
three possible mechanisms for such an increase: (1) an increase in the salinity of
the fluids occupying the fault zone, (2) an increase in the porosity, and (3) the ex-
ponent m of Archie’s law (σ(φ) ∝ φm; Archie [1]) changing from 2 to 1. In the
context of percolation theory, it may be possible to find a physical basis for the
third mechanism. In fact, a change in Archie’s exponent from 2 to 1.3 would be
expected if the random connectivity of the pore space were to change from 3D to
2D. Such a change would be consistent with the development of an interconnected
network of micro-fractures along or parallel to the fault plane. It is difficult to say
by how long the development of such an interconnected network could precede an
actual earthquake, but one would expect that an earthquake would follow relatively
quickly thereafter (e.g., [33]). The general mechanism proposed [67] has been crit-
icized on the basis that the mutual inductance between the fault zone and the crust
may mitigate the effects of the increased conductivity [27].

Another potential application regards the ability of the electrokinetic effect to
generate sufficient charge separation to produce a measurable electric field. The
question ultimately relates to the ability of the separated charge to recombine under
the influence of the induced electric field. In a homogeneous medium the means
to generate an electric field are not present, but the earth’s crust is extremely het-
erogeneous. Here we consider partially saturated conditions. It is relatively easy to
show that any electric field produced will be on the order of J ek/J e, where J e is
the electric current (proportional to the electrical conductivity). Note that (as shown
in Sect. 5.1) J e and J ek are expected to have the same dependence on the moisture
content (universal scaling), meaning that no electric field can be generated when
both the electrokinetic and the return current are generated in the same medium,
even if it is not homogeneous. However, if the electrokinetic current is generated in
the vicinity of a fault, a large portion of the return current, which generally requires
the entire medium, might need to flow in a different medium—for example, on the
opposite side of the fault plane. If the first medium had a moisture content above the
percolation threshold but the second was below the threshold, the possibility may
exist to generate a large electric field.

The question of whether charges can percolate before crack networks do, which
may be relevant for the possible existence of electromagnetic precursors to earth-
quakes [30, 47], has been addressed as long ago as 1983 [65]. In that article “Mi-
crocrack connectivity in rocks: a renormalization group approach to the critical phe-
nomena of conduction and failure in crystalline rocks,” Madden argued that perco-
lation of charge is generally easier than percolation of cracks. This argument was
made independently in the context of the glass transition by Hunt [41], who ex-
plained, using critical path analysis arguments, that the macroscopic transport of
charge was easier (lower activation energy and smaller pc) in viscous liquids than
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mechanical response. This argument was based on the dimensionality of the trans-
port process: steady-state electrical transport requires only the connection of a quasi-
one-dimensional path, whereas viscosity experiments measure the transport of one
entire surface relative to another. Miyazima [69] and Miyazima and Yamamoto [70]
are currently putting this concept on a sounder footing. We quote the perspective of
Freund and Sornette [30]:

We conjecture that the intermittent and erratic occurrences of EM signals are a consequence
of the progressive build-up of the battery charges (from plastic deformations of peroxy
bonds in silicates) in the Earth crust and of their release when crack networks percolate
through the stressed rock volumes.

Note that the relative ease of percolation of charge carriers relative to that of cracks
is cited in both the change of Archie’s law exponent from 2 to 1.3 (when the crack
network finally percolates, a higher degree of continuity of charge pathways in-
creases the electrical conductivity) and in the explicit arguments quoted in the pre-
vious paragraph, although details of the two arguments are distinct.

The point of this discussion is not to address the question of whether earthquake
precursors may exist, but rather to show that a solid theoretical development of
the fundamental conduction processes may inform the discussion of the potential
relevance of earthquake precursors.

7.6 Summary

We have not described the wide range of phenomenological descriptions of the sat-
uration dependence of transport properties in porous media that is in use. The con-
fusion has developed largely from a denial of the relevance of percolation theory,
but wide discussion of the potential relevance of non-universal scaling in continuum
percolation theory has added grist to the mill. In fact, however, experiment reveals
extraordinary simplicity and the universal conductivity exponent value of 2 shows
up almost everywhere.

We find that the saturation dependences of the air permeability and the elec-
trokinetic current are influenced only by topological effects described in percolation
theory and thus follow universal scaling. We find that the hydraulic conductivity
K(θ) is determined primarily by the pore-size distribution, while the electrical con-
ductivity σ(θ) is mostly independent of the pore-size distribution. Since the satura-
tion dependence of the electrical conductivity is mostly unaffected by the pore size
distribution, so are those of solute and gas diffusion. Even the thermal conductiv-
ity follows universal scaling, though measurements of the thermal conductivity are
made so far from the percolation threshold that a cross-over to a linear (rather than
quadratic) dependence on saturation is seen. This cross-over is partially hidden by
geometrical effects of pendular fluid structures.

In both K(θ) and σ(θ) the influence of pore sizes increases as one moves away
from the percolation threshold. Combining percolation with a random fractal model
of porous media, allows us to assess the ranges of moisture content where the in-
dividual influences dominate in the electrical and hydraulic conductivities. Assess-
ment of the relative importance of the pore size distribution contribution vis-à-vis
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topology can be accomplished by comparing critical path analysis with percola-
tion scaling results, and the accessible saturation range is divided into two separate
regimes. A similar division is useful for the electrical conductivity, though in the
case that the pore-size distribution is not too wide, the critical path analysis is never
needed and the relevance of percolation scaling extends through the entire range of
saturations. Both the air permeability of dry soils and the hydraulic conductivity of
saturated soils must be calculated by essentially the same optimization procedure
that combines effects of topology (percolation scaling) and pore size distribution
(using critical path analysis from percolation theory).

The minimal influence of the pore size distribution on the electrical conductivity
justifies the application Archie’s law to the saturation-dependence of the electrical
conductivity with exponent 2. It also tends to restrict the porosity exponent to values
near 2. At the dry end of the spectrum, the quadratic dependence of the thermal
conductivity on density λ ∝ ρ2 has the same justification in percolation scaling,
providing a nice symmetry.

If there is virtually no distribution of pore sizes (in artificial media), one may
easily detect effects of film flow since the hydraulic conductivity follows universal
scaling over only approximately two orders of magnitude of its variation. In natural
media, where pore-size influences are much greater, the relevance of film flow is
inferred from the failure of the hydraulic conductivity to vanish at the percolation
threshold for capillary flow. In the case of the thermal conductivity, the pore size
distribution is not relevant, as the thermal conductivity of each fluid in the pore
space is typically less than that of the solid portion of the medium. Since the solid
phase has a large conductivity, effects of pendular water structures at low water
contents, which eliminate a large contact resistance between grains, can be seen.

The fact that the upper range of the percolation variable p is investigated in
the thermal conductivity allows additional conclusions to be made. For p > 0.8,
Kirkpatrick [52] found that the quadratic scaling from percolation theory is better
replaced by the linear scaling from effective medium theory. Effects of this cross-
over are directly seen in the thermal conductivity, where the thermal conductivity of
dry soils follows percolation scaling (in the density), but the saturation dependence
is better described by the linear function. Finding this dependence in the thermal
conductivity led us to the explanation of why the regression of the gas diffusion on
the percolation scaling prediction yielded a proportionality factor of 1.35 instead
of nearly 1, as in the case of the air permeability. The cause is that the factor used
to normalize the gas diffusion is its value in air, i.e., for φ = p = 1, rather than its
value under dry conditions (ε = p = φ ≈ 0.4). Consequently, for gas diffusion, it is
necessary to use the full scaling prediction, including the linear regime, in order to
capture the correct normalization.

These and related results are summarized below in Table 7.4. In the case of the
first four properties, the specific results of the random fractal model under typical
conditions are used, while for the thermal conductivity the case that the solid and liq-
uid portions of the medium have approximately the same thermal conductivities has
been assumed. In the table (except for the thermal conductivity), “topology” implies
that the predominant contribution to conduction comes from connectivity/tortuosity,
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Table 7.4 Dominant influences on various conduction or flow properties, describable using perco-
lation theory, depending on saturation. Topology means that universal percolation scaling applies,
geometry means that a bottleneck pore (or pendular structure) radius is relevant as found in crit-
ical path analysis, and competition implies that a standard method, in which both influences are
important, is required (described in Chap. 5. The difference between “small” and “large” values
of saturation, S, depends on the property considered, so is not quantitatively defined. The entry—
means that the value of the transport coefficient is normally zero. No entry means that the response
cannot realistically be calculated using percolation theory, except for the case of the electrical
conductivity at zero saturation. In this particular case, the distinction between media in which the
solid fraction conducts or does not conduct is too great to allow such a simple classification. The
subscript ek stands for electrokinetic current

Property S = 0 Small S Large S S = 1

K – topology geometry competition

ka competition topology topology –

σe topology topology variable

σek – topology topology topology

λ topology geometry

so universal percolation scaling best describes the saturation dependence. In the case
of the thermal conductivity, “topology” represents mostly the linear prediction from
effective medium theory. “Geometry” refers to the relevance of the radii of the water
inclusions, whether pore size dominated or in pendular structures, while “competi-
tion” means that the best expression is derived using a competition between the
two methods (referred to by some authors such as Stauffer and Sahimi as critical
path analysis). Entries for which the property in question does not have a non-zero
contribution, or for which percolation concepts have no use that we can determine,
are left blank. We expect that the nearly universal relevance of percolation theory
to these properties will allow simultaneous representation of the saturation depen-
dences of the electrical and thermal conductivity, solute and gas diffusion, as well
as the air permeability on the same universal curve. Probably one will be able to see
the effects of the pendular structures on the thermal conductivity in a slight bump.

Our conclusions are based on the following results. Our pore-size dominated
results for the hydraulic conductivity performed best among commonly used phe-
nomenologies, including a comparison with approximately 1200 individual data
points from over 110 soils. Clear evidence for the relevance of universal scaling
from percolation theory is seen in the saturation dependence of the air permeability
(exponent value 2.03 extracted from 325 measurements) and gas diffusion (exponent
of 2.01 extracted from 632 measurements) as well as in the electrical conductivity
(612 experiments) and solute diffusion (exponent of 1.97 extracted from 605 experi-
ments plus 11 more experiments on Fig. 7.18 [73] which are now also understood as
following universal scaling. Additional evidence to support the relevance of univer-
sal scaling is found in the density dependence of the thermal conductivity (exponent
of 2.02 extracted from almost 200 experiments), and the porosity dependence of the
electrical conductivity (1.86±0.19 from 50 different systems [102]). Altogether the
analysis of those properties exhibiting universal scaling has extended to over 2400
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individual experiments reported in ca. 100 publications. If the powers of the meta-
data sets are averaged and a standard deviation taken, one finds 1.98 ± 0.07. If the
porosity dependence of the electrical conductivity is excluded, the corresponding
result is 2.01 ± 0.03. We also found two cases of two dimensional systems (sim-
ulations by Kuentz et al. [58] and experiments by Steriotis et al. [98]) for which
the conductivity (or air permeability) follows universal scaling with the appropriate
exponent from 2-D percolation, namely 1.3. Evidence for a change in the conduc-
tivity exponent μ from 2 to 1.3 was inferred from analysis of the increase in low
frequency magnetic field strength three hours before the Loma Prieta earthquake.
Otherwise little evidence for two dimensional values of μ was found.

We will see in Chap. 11 that measurements and simulations of the tortuosity also
follow universal scaling formulations of percolation theory, further evidence for the
utility of percolation theory in understanding flow and transport properties of porous
media.

Since the agreement between theory and experiments is obscured by less scatter
in many of the classic experiments [8, 14], for example) than in the more recent ex-
periments [100], we suggest that an additional reason for the confusion of proliferat-
ing phenomenologies is a sloppier experimental technique in modern experiments.
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Chapter 8
Pressure Saturation Curves and the Critical
Volume Fraction for Percolation: Accessibility
Function of Percolation Theory

The pressure-saturation curves of porous media give fundamental information about
the pore space. In equilibrium, ignoring effects due to hysteresis and pore accessi-
bility, it should be possible to extract a pore-size distribution from h(θ) data, as
described in Chap. 4. However, a number of percolation effects complicate the anal-
ysis and make such a simple inference impossible. The pressure-saturation relation
is affected by both the lack of continuity of the air phase near saturation, and by
a similar lack of continuity of the water phase near the dry end. Given that these
effects are due to phase transitions (in the percolation sense), small changes in ex-
perimental conditions can produce major (and sometimes puzzling) changes in the
results. Further, since the correlation length diverges near these transitions, numeri-
cal simulations under both wet and dry conditions are amenable to finite-size scaling
analysis. Since the critical volume fractions for percolation of air and water are crit-
ical to the discussion, experimental evidence regarding these values is presented
toward the end of this chapter.

When a porous medium is dried from near saturation, the wetting phase be-
comes discontinuous below the percolation transition. This forces a change in
the mode of water transport from capillary flow to either film flow or vapor-
phase flow. These new modes of transport could be safely ignored at high mois-
ture contents, because they involve coefficients that are orders of magnitude lower
than typical hydraulic conductivities from capillary flow. But if these new modes
are not effective in a given situation, it will prove difficult to reduce θ to val-
ues less than the critical volume fraction θt for percolation. In fact, just re-
ducing θ to θt is difficult because the hydraulic conductivity value for capil-
lary flow vanishes rapidly as θt is approached. A related possibility, that even
above the critical moisture content some water-filled pores could lose access to
the infinite cluster and fail to drain, was discussed in [11], where it was pointed
out that the phenomenon could explain the results of experiments with rapid
drainage. As Gist et al. [7] point out: “The subset of pores occupied by mercury
at the [percolation] threshold diameter has been directly visualized by injecting
a porous medium with molten metal, then solidifying the metal. Examined opti-
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cally, the resulting structure has the fractal dimension expected from percolation
theory [5].”

8.1 Structural Hysteresis

The role of percolation in hysteresis in wetting and drying of porous media has been
appreciated in the physics community for nearly thirty years [30], but much less so
in the porous media community. A basic consideration of hysteresis in wetting and
drying should suggest that changes in the water content will be limited by the con-
tinuity of the air phase near saturation, and by continuity of the water phase at the
dry end. That is, a porous medium that wets and dries will typically pass through
two distinct percolation transitions. What this means is that, neglecting edge effects,
water (air) may be trapped in isolated clusters during drying (wetting), while wa-
ter (air) cannot enter in arbitrarily small quantities [less than the critical volume
fraction] during wetting (drying). In a two-dimensional medium these two phase
transitions would occur at the same moisture content, but in three-dimensional me-
dia they are generally separated by a wide range of moisture contents where both
phases percolate.

A second important contributor to hysteresis, the so-called “ink-bottle effect,” is
well known to the porous media community [21, 22]. According to the capillary
relationship (Eq. (3.12)), when an air-water-solid system is at equilibrium, a given
pore can be filled with water only if its radius is less than some value: r < A/h. Wa-
ter is “allowed” in these pores. But according to the pore-body, pore-throat picture
of porous media, the tension required to remove water from such a pore is higher
than that which allows water in: in the removal process (drainage) the meniscus
must “fit” through a pore throat, while in the filling process (imbibition) the menis-
cus must span the pore body. This fundamental asymmetry in the wetting and drying
processes means that, at a given water content, the pressure in a drying curve should
be higher than in a wetting curve. This factor relates to the geometry of an individual
pore, but in a system with self-similar properties it relates to every pore.

Consider imbibition under a high tension (negative water pressure) into an ini-
tially dry medium. Water cannot access most pores that are allowed, because the
paths to those pores pass through other pores that are not small enough to allow wa-
ter [8]. This problem is obviously related to percolation theory, but it was originally
thought that traditional percolation theory was not adequate to treat this problem. In
the 1980s considerable literature arose in the physics community regarding a special
form of percolation theory called “invasion” percolation [31]. From our standpoint,
invasion percolation deals with the movement of the wetting or drying front, and
therefore (in principle) with spatial gradients of percolation quantities. By the end
of the 1980s it was accepted that, at least with respect to hysteresis, the difference
between traditional percolation theory (discussed here) and invasion percolation was
minimal [27]—though at least one key investigation [30] had a significant inconsis-
tency which will be revisited below.
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In traditional percolation theory, the fraction of accessible sites is that fraction P

that is part of the infinite cluster. During drying, all of the water-allowed sites are
accessible to water. But in wetting the fraction of water-allowed sites that are also
accessible to water is reduced by P . P is known to behave in 3D as

P ∝ (p − pc)
β = (θ − θt)

0.4 (8.1)

where the equality follows from the application to continuum percolation with the
moisture content playing the role of p. An obvious problem in applying this concept
is that our expression for P is a proportionality, not an equality. Clearly P should
be constrained to equal 1 at or above some moisture content; a reasonable choice is
to require P = 1 at θ = φ. For this case we can write [11]

P =
(

θ − θt

φ − θt

)0.4

(8.2)

The implication of this particular normalization factor is that, during wetting, it
is certain only at saturation that all water-allowable pores are also water-accessible.
For practical purposes the condition P = 1 is likely reached at much lower water
contents.

It is possible to express the actual moisture content as the product θ ·P(θ), as long
as θ in this product refers to the equilibrium moisture content, that is, the volume
of the allowable pore space. This notational complication can be easily removed by
expressing both factors in terms of the tension h. Referring water content to pressure
requires reference of the critical water content to a critical pressure hc, which can
be defined via [11]

θt =
[

3 − D

r3−D
m

]∫ A/hc

r0

r2−Ddr (8.3)

Thus, starting from dry conditions with a very large value of h ≥ A/r0, reduction
of h produces an increasing fraction of water-allowable pore space (but, ignoring
edge effects, no increase in water-accessible pores or water content) until, at the
value h = hc, the water-allowable pore space percolates. Proceeding from this point
we have [11]

θ(h) = 3 − D

r3−D
m

[ (
A
h

)3−D − (
A
hc

)3−D

(
A
hA

)3−D − (
A
hc

)3−D

]0.4 ∫ A/h

r0

r2−Ddr (8.4)

We emphasize again that this approach neglects the effects of finite clusters of
water-allowed pores which are accessible from the edges of the system. The ef-
fects of such pores can be incorporated into the treatment via finite-size scaling, but
we will not do that here. The present approach also neglects water that would fill
“pores” on rough (fractal) surfaces of individual grains, at least insofar as this con-
tribution to the pore space is described by a separate surface fractal dimensionality.
Such a contribution could theoretically lead to a change in slope of the pressure-
saturation curves at low moisture contents.
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Fig. 8.1 Drainage data from Bauters et al. [1] for a collection of sands with differing fractions (the
smaller diamonds) of hydrophobic particles, with the fraction being zero for the large diamonds.
The theoretical curve was obtained by using the particle-size data to find the fractal dimensionality
of the pore space while the air entry pressure, hA, was used as an adjustable parameter. The critical
moisture content for percolation (0.048) is designated by the arrows; in a soil with only sand
particles these values are assumed identical for air and water

With these caveats we compare Eq. (4.24) with experimental measurements
(Fig. 8.1) of the drying of blasting sand with various fractions of particles treated
to be water-repellent [1]. Each different fraction of water-repellent particles gave
a different curve, but displaying them all together shows that the critical moisture
content for percolation is the same in each case. As in earlier chapters, particle-size
data were used to find the ratio r0/rm, after which φ and the ratio r0/rm are com-
bined to give D. A single air-entry pressure hc was adjusted to produce the best fit
with experiment over the range of intermediate saturations. The value of the critical
volume fraction for percolation, θt = 0.048, was chosen as the point below which
theory and experiment deviated (due to non-equilibrium, discussed below).

It is clear from the data that the appropriate value of the characteristic pressure for
imbibition could not be the same as for drainage. This is due to the “ink-bottle” ef-
fect mentioned earlier in this chapter. Lenhard [21] and co-workers [22] investigated
this effect for a number of soils and found that the typical ratio of characteristic pres-
sures for drainage and imbibition is 2, indicating that pore bodies characteristically
have radii twice that of pore throats. Using Eq. (4.24) (derived for drainage) for im-
bibition, but with the characteristic pressure reduced by a factor 2 as per Lenhard et
al. [22], does not suffice to transform a drainage curve into an imbibition curve [11]:
the curve intersects reality only near saturation (Fig. 8.2). But when the accessibility
effects of percolation are included by using Eq. (8.4) (without additional unknown
parameters), the match between experiment and theory is quite good. Figure 8.2
provides an additional check on the estimate of the critical volume fraction: devi-
ations from prediction set in at a moisture content φ − θt (still with θt = 0.048).
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Fig. 8.2 The imbibition curve for the hydrophilic sand of Fig. 8.1. “Theory” uses Eq. (4.24) with
a characteristic pressure half of hA in Fig. 8.1. “Hysteresis” uses the prediction of Eq. (8.4). There
are no other adjustable parameters here; the critical volume fraction comes from Fig. 8.1, and the
fractal dimensionality from the particle size distribution. Here the critical air content for percolation
is clearly also very close to 0.05

These deviations arise from “entrapped” air, and become apparent as the volume of
air-filled pore space reaches the percolation threshold.

The general idea of allowable vs. accessible pores in the context of percolation
theory was introduced by Heiba et al. [8] in a publication treating a Bethe lat-
tice model. Publications of Wilkinson (e.g., [30]) later in the 1980s developed this
framework further, accounting for the connectivity of water films during drying, and
their absence during wetting. This led to different treatments for air entrapment dur-
ing wetting (residual air) and residual water during drying. In that respect his treat-
ment was more careful and general than the present treatment. However, Wilkinson
treated the pressure as the fundamental percolation variable—which was reasonable
for the bond percolation problem he was addressing with a network model—and
then expressed the moisture content in terms of a sublinear power of h, rather than
using the moisture content as the fundamental variable (in continuum percolation)
and expressing the pressure as a superlinear power of θ . This reversal of the roles of
the variables calls his conclusions into question, because those conclusions depend
on the sublinearity of the powers.1 In addition, his comparison with experiment was
schematic, without specific data; a detailed comparison between his analysis and
experimental data (for example, the results given here) has yet to be made. Wilkin-
son also did not consider various experimental difficulties, which include lack of
equilibration due to low values of the hydraulic conductivity (or rapid drainage),
nor the differences in media, some of which may be structured. Any one of these

1In particular, Wilkinson addressed the curvature of the pressure saturation curve, log[−h] vs.
θ , at large moisture contents and determined that the typically observed negative curvature was
appropriate from percolation theory. However, we find that a positive curvature is appropriate (and
indeed observed for sandy media). The opposite curvature, which is also frequently observed, is
actually a result of finite-size complications. See Sect. 8.4 for additional quantitative evidence
supporting our interpretation.
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factors can influence the shape of the drainage and imbibition curves. The first of
these questions will be treated next; effects of the structure of a medium will be
addressed in Chap. 12.

8.2 Hydraulic Conductivity-Limited Equilibration, and Dry-End
Deviations from Fractal Scaling

Chapter 6 discussed the limits of validity of an equation for hydraulic conductivity,

Kf(θ) = KS

[
1 − φ + (θ − θt)

1 − θt

] 3
3−Dp

(8.5)

and the fact that it must be replaced by

Kp(θ) ∝ (θ − θt)
2 (8.6)

in the vicinity of θt. For the sake of clarity, K calculated by Eq. (8.5) is fractal scal-
ing, denoted Kf, while K according to Eq. (8.6) is percolation scaling, denoted Kp.

Standard methods of producing pressure-saturation curves use drainage across
a porous ceramic plate. A positive air pressure is applied to the sample, and its
effect on pore water-allowability is assumed equivalent to that of an equivalent ten-
sion applied to the water phase. These measurements typically require long equi-
libration times, because at low water contents, hydraulic conductivity values can
be extremely low. For example, suppose we have a partially drained 10 cm high
column of soil with porosity φ = 0.5, and we subject it to a pressure h = 1 m. If
K(θ) = 10−8 cm/s (a reasonable value), then removing water equivalent to a 1 mm
thick layer, i.e. decreasing θ by 0.02, will take over 500 days. As long as measured
values of K diminish in a regular way according to Eq. (8.5), one can extrapolate
the equilibration time for the next step of an experiment. But the two relationships
for K (Kp in Eq. (8.5) and Kf in Eq. (8.6)) raise a new complication: if θ drops
below the cross-over moisture content θKx, then K decreases much more rapidly
(see Fig. 8.3)). The equilibration times required by Eq. (8.6) are therefore much
greater [16]. If this marked increase in equilibration time is not anticipated, then
the ratio of the allowed time to the required time would equal the ratio Kp/Kf; the
observed reduction in water content would likewise be too small, on the order of
Kp/Kf. Specifically, on a fractal soil which at pressure hi equilibrates to a moisture
content θ = θxK, then when the pressure is increased to hi+1 the water content will
be reduced by only

�θ = Kp

Kf
φ

[(
hA

hi+1

)3−D

−
(

hA

hi

)3−D]

(8.7)

within the allowed time: with too little drainage time, the moisture content will not
drop as rapidly as predicted by the fractal model.

We have developed an algorithm for predicting the non-equilibrium moisture
content of a medium. The algorithm is based on Eq. (8.7); that is, it assumes
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Fig. 8.3 A generic hydraulic
conductivity as a function of
saturation, but similar to that
of the McGee Ranch soil
(Fig. 6.1). This figure shows
the deviation from fractal
scaling of the conductivity at
low moisture contents
associated with the cross-over
to percolation scaling

that the allowed drainage time at any given tension is calculated by extrapolat-
ing Kf (Eq. (8.5)) to ever-drier conditions. The algorithm assumes differentially
small changes in tension, and relates a geometrical water loss to an actual water
loss:

dθa =
[
Kp(θa)

Kf(θa)

]

dθ (8.8)

where the subscript a denotes actual. Now integrate (over the dummy variable, θ ′)
to obtain

∫ θ

θxK

dθ ′ =
∫ θa

θxK

dθ ′ Kf(θ
′)

Kp(θ ′)
(8.9)

The right hand integral is given in terms of the Gauss hypergeometric func-
tion 2F1. By defining

G(x) ≡ KS

(1 − t)K0

[
1 − φ

1 − θt

] 3
3−D

(x − θt)
1−t

2F1

[

1 − t,
3

3 − D
,2 − t,

θt − x

1 − φ

]

(8.10)

we can write an implicit relationship for θa:

θ − θxK = G(θa) − G(θxK) (8.11)

that maps θt ≤ θa ≤ θxK to 0 ≤ θ ≤ θxK. The original, or presumed water retention
function, h(θ), is then mapped to h(G(θa)). Note that since K vanishes at θt, the
moisture content θt is never reached with this procedure. Figure 8.4 shows the ef-
fects of incomplete equilibration on the apparent water-retention curve, as predicted
by this algorithm, for the same system shown in Fig. 8.3. Although the algorithm is
simple, the results are robust. The procedure was also performed algorithmically for
finite pressure steps �h. Over the relatively wide range of �h values investigated,
the resulting non-equilibrium portion of the water retention curve (not shown) was
identical to that predicted by Eq. (8.11), generated by changing the pressure in in-
finitesimal steps. An interesting aspect of these results is the quasi-universality of
the shape of the water-retention curve in the vicinity of θt.
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Fig. 8.4 The
non-equilibrium water
retention curve expected for
the medium with K

represented in Fig. 8.3. Here
the threshold water content is
given as θt , while the
cross-over moisture content is
given as θxK (changed from
Hunt and Skinner [16]).
Equations (8.10) and (8.11)
were used to make this figure

The above is a somewhat oversimplified picture as well as an oversimplified cal-
culation: both the actual value of K and its extrapolated value change over the time
the water is draining. Nonetheless, it gives accurate predictions of experimental data,
as shown in Figs. 8.5–8.6 (from Hunt and Skinner [16]). To generate these predic-
tions, particle-size data were used to find the ratio r0/rm, the porosity φ and ratio
r0/rm were combined to give Dp, then hA was used as an adjustable parameter to
generate the equilibrium moisture contents. θt was taken as the lowest water con-
tent obtained in the experiment, and θxK was calculated from Eq. (6.23); then for

Fig. 8.5 A reevaluation of the deviation of experimental water-retention curves from the fractal
scaling (Eq. (4.24)) at low moisture contents. The solid diamonds are experimental data for the
USMW 10–45 soil from the Hanford site [6], while the open squares are the predictions from
Eq. (4.24). The open circles are obtained from the algorithm described in the text, which reduces
the actual moisture lost by the ratio of Eq. (8.6) to Eq. (8.5). This algorithm is only appropri-
ate for θ < θx, which was obtained using Eq. (6.26) and the lowest moisture content attained by
experiment for θt
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Fig. 8.6 The same demonstrations for 6 other Hanford site soils
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Fig. 8.6 (Continued)
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all values of h corresponding to θ < θxK, the magnitude of �θ was reduced by the
ratio Kp/Kf as in Eq. (8.7). However, this procedure still yielded a predicted mois-
ture content lower than the observed value. In order to match the observed moisture
contents, it was necessary to take the ratio of the actual value of K and the value of
K assumed to be accurate for a moisture content two time steps prior. This suggests
that the value of K from a previous measurement was used as a guide for a subse-
quent measurement, which would imply that the authors of the study were not an-
ticipating any reduction in K , even according to a result compatible with Eq. (8.5).
Applying this connection to K two measurements earlier is equivalent to using an
adjustable parameter; on the other hand the same value of this parameter was used
for all seven of the cases investigated and presented here. Given this restriction on
flexibility, the predictions appear to be quite accurate.

The results presented here suggest that widely-observed deviations from frac-
tal scaling of pressure-saturation curves at low saturations are not a defect of the
fractal model itself. On the contrary, because parameters derived from the use of
fractal models (in particular, θt) can then be used to predict hysteresis in drainage
and imbibition, or (θx,k) the shape of the water retention curve in the vicinity of
the percolation threshold, the case for fractal treatments is actually strengthened. It
is not unreasonable to speculate that a large number of natural soils may be best
described by the Rieu and Sposito [26] fractal model.

In addition to the 12 soils analyzed for dry-end deviations caused by non-
equilibration (of which 7 are shown in this chapter), we have also analyzed soils
for which neither the particle-size data nor the water-retention curves is consistent
with the relatively simple Rieu and Sposito model [3]. Rather, in these soils there
is considerable complexity at relatively high water contents. These results are de-
scribed in Chap. 12 in another context.

We (Dr. Skinner and Dr. Hunt) were engaged in a project which reverses the
procedure described here. Rather than predicting the (non-equilibrium) water re-
tention curve from a given pore size distribution, we estimate the actual pore size
distribution from the (non-equilibrium) water retention curve. The procedure in-
volves inverting Eq. (8.8), solving for 0 < θ < θxK in terms of θt < θa < θxK. For
a fractal model then, the equilibrium water loss would be given by multiplying the
non-equilibrium water loss by Kf/Kp. In the general case, Kf, is replaced by a gen-
eral result from critical path analysis. The inverse problem is made more complex as
a consequence of the lack of sufficient pore size data to apply critical path analysis
for values of θ < θxK + θt. Any solution must then be tested for self-consistency. We
estimated first θt as the lowest moisture content reached. We estimated θxK as the
point where the water retention curve appears to develop a positive deviation (in h).
If θt was chosen to be too large, we generated negative moisture contents and chose
a smaller value for θt. In order to constrain the values of θxK we required the ratio
of conductivities to be a monotonically increasing function.

We found that using critical path analysis to generate an extrapolation of the
numerical results for K to moisture contents θ < θxK +θt gives a good trial solution;
when K(θ) so obtained is substituted into Eq. (6.35), we found that, for the case
shown, our initial estimate of θxK was within 1 % of the solution from Eq. (6.35),
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Fig. 8.7 The crosses and the associated curve show initial water-retention data (from [28]). The
critical moisture content for percolation, θt , and the point at which the water retention curve begins
to deviate from the equilibrium pore-size statistics, θd = θxK, are clearly indicated. Our procedure
generated the green curve as the equilibrium water-retention curve, implying that a pore-size dis-
tribution extracted from the raw data would put a great deal more water into smaller pores than is
justified. This result, if verified generally, would imply that many conclusions based on the impor-
tance of surface water and water in pits or fractures of individual particles have been overstated

which we considered to be acceptable. The results of our procedure are shown in
Fig. 8.7. Such final results could then be used to recalculate any properties that were
estimated originally from the pore size distribution implied by the water retention
curve. If the results of Fig. 8.7 prove reliable, they will indicate that a much larger
fraction than is typically assumed is contained in water-filled pores and that the
amount of water on surfaces or in pits of grains is relatively small (<5 %). Note that
this conclusion is generally compatible with other results that imply small critical
moisture contents for percolation, and small water contents in pendular structures
(thermal conductivity). But we found that the bootstrap inversion process to find the
actual pore-size distribution was quite unstable and often yielded unphysical results.
Only about 20 % of the time did we generate results that we deemed reliable.

This discussion ultimately leads to the question: Which is more useful in deter-
mining the pore size distribution: the water-retention curve, or the particle-size dis-
tribution? The reader will have to answer that question for him- or herself, but our
contention is that, due to complications from phase continuity of the fluids (resid-
ual water, air entrapment, inaccessible allowed pores) and from fluid flow properties
(non-equilibration), the water retention curve is quite inadequate by itself. Of course
the particle-size distribution is also inadequate, lacking direct information on pore
sizes as well as pore structure. From a pragmatic perspective, one uses the informa-
tion that is available, and particle-size data are far more widely available than water
retention data. We hope that future work will allow us to make use of both together,
such that each can overcome deficiencies in the other.
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Fig. 8.8 Particle-size data
for 7 Hanford site soils, all
different from Figs. 8.4–8.6
(from [14]). The flat portions
of the curve intersect the
fractal scaling region at the
radii r0 and rm

8.3 Analysis of Water-Retention Curves in Terms of the Critical
Moisture Content for Percolation

The possibility that the dry end percolation transition might somehow produce de-
viations from the fractal scaling prediction motivated an earlier investigation into
dry-end deviations in water retention curves [14]. While it was suspected that the
lack of phase continuity could interfere with the removal of water, we did not think
that the small magnitude of the hydraulic conductivity would produce the effect di-
rectly. Thus the values that were compiled were simply the moisture contents,2 θd,
at which the deviation from scaling set on. These moisture contents were then com-
pared with the critical volume fractions for percolation from the solute diffusion
experiments of Moldrup et al. [25].

The procedure followed was to use the particle size information from each of
Freeman’s [6] soils to find r0/rm, and thus determine the fractal dimensionality of
the pore space from Eq. (4.19. Particle size data from seven of the soils are shown
in Fig. 8.8). hA was then adjusted to produce the best visual fit with the experi-
mental data for the water-retention relationship (Eq. (4.24)), concentrating on the
middle range of saturations. The value of θd was then determined by inspection
(Fig. 8.9). Meanwhile, θt was also predicted using the relationship of Moldrup et
al. [25], θt = 0.039(A/V )0.52, where A/V is the specific surface area. Application
of this relationship normally relies on experimentally determined values of A/V ,
but that information was not available for Hanford site soils. The alternative was
to calculate the dependence of the surface area on such quantities as r0/rm, and
the fractal dimensionality of the solid medium, Ds, obtained from Eq. (4.20). We
estimated A/V using the ratio implied by the RS model,

A

V
∝

∫ rm
r0

r2(r−1−Ds)dr
∫ rm
r0

r3(r−1−Ds)dr
(8.12)

implicitly assuming that the geometrical factors relating particle volume and particle
surface area were both scale-invariant, and also the same for all of our soils. This

2Although it became clear that the experimentally determined θd could be identified with the the-
oretical θxK, it is useful to continue referring to θd in the context of these experiments.
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Fig. 8.9 The predicted and observed water retention curves for the same 7 Hanford site soils as in
Fig. 8.8 (from [14]). hA was again used as an adjustable parameter. In each case the arrow shows
the value chosen for θd

Fig. 8.10 Regression of θd
on calculated θt , using the
Moldrup relation for θt in
terms of the specific surface
area and using the Moldrup
notation, SAvol for A/V

(from [14])

last (necessary) assumption is clearly incorrect, and introduced some random error
into the comparison.

We could now compare the measured θd with the value of θt from the Moldrup
relationship. There was clearly a proportionality constant that we had not estimated,
but the important result [14] was that θd = Cθt + 0.06 for some numerical con-
stant C (Fig. 8.10); meanings of the abbreviations for the various soils are given in
Hunt and Gee [14]. The value of R2 for the regression was 0.83. At the time of the
study the result that there was a positive intercept was not understood since the fur-
ther development of the theoretical description [13] to include the cross-over from
Eq. (8.5) to Eq. (8.6) had not been made. Thus several attempts were made to try to
find some complicating factor in the analysis.

In the most important analysis, a subset of soils was excluded from consideration
because in these soils the hydraulic conductivity could be deduced to fall to very low
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Fig. 8.11 From [14]. Representation of log(K) at θd vs. θd for 40 Hanford site soils. The hori-
zontal line depicts the minimum value of K = 5 × 10−8 cm/s [14], for which equilibrium mois-
ture contents were measurable under the stated experimental conditions [19]. The 15 soils with
K(θd) < 5 × 10−8 cm/s were excluded from subsequent analysis in terms of percolation theory;
their deviation from fractal scaling was determined by other factors (see text)

values at moisture contents well above θt on account of either small KS values or
Dp values near 3. For values of the hydraulic conductivity less than approximately
5 × 10−8 cm/s, the experimental procedure used to gather the data, [19] could be
shown [14] using Eq. (8.15) to be inadequate to drain the soils to equilibrium on
account of their experimental time limit of six weeks. The prediction was based on
the use of Eq. (8.5) to calculate K(S) from porosity, fractal dimensionality and the
saturated value of the hydraulic conductivity [18]. Figure 8.11 shows the values of K

at θd from this calculation for soils of various areas on the Hanford site. Note that the
lowest K values were obtained for the VOC (Volatile Organic Carbon) soils, and it is
apparent from Fig. 8.10 that these soils also exhibited the largest values of θd relative
to the regression equation. Although R2 for the correlation between θd and θt rose to
0.94 after soils with low K values were excluded from the analysis, for reasons other
than the proximity to the percolation transition, the intercept remained unchanged
at 0.06. After the development of Eq. (6.23) for the relationship between θxK and
θt [11], we could interpret θd as θxK. Indeed it turns out that if the mean values
Dp = 2.857 and φ = 0.394 for the Hanford site soils are inserted into Eq. (6.21), one
finds θxK − θt = 0.06 [12]. The equivalence of these two numerical values implies
that the conclusions for the subset of soils investigated in Sect. 8.2 are likely to apply
to most of the data set of 43 soils.

The implication of the study as a whole was that all of the deviations from fractal
scaling of the water retention curve could be attributed to lack of equilibration, i.e.
values of K(S) which were too low to allow the equilibrium change in water content
actually to occur. Not all soils had low values of K(S) for the same reason, but for
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Fig. 8.12 An example of a
wet-end deviation to higher
moisture contents than
predicted from fractal scaling.
The solid diamonds are again
data from Freeman [6], while
the open squares are from
Eq. (4.24). This deviation is
predicted by percolation
theory from the inability of
air to enter the system until
the air-allowable pore space
percolates

a large number of the soils the cause was the approach to the percolation transition.
This question is further discussed in the last portion of this chapter.

The development of this regression of θd on θt had an added benefit. It was now
possible to calculate A/V from Eq. (8.12) for the McGee Ranch soil and North
Caisson soils [13], and to use the same regression to predict their values of θt. Using
the values of θt it became possible to predict the hydraulic properties of those two
soils without use of adjustable parameters (Figs. 6.1 and 6.2). Of course the same
regression could have been used for any of the individual soils in this study for
the same purpose (and was), but there was a limited use for those predictions since
the data for the hydraulic conductivity as a function of saturation for the remaining
43 soils was not made available to us. Nevertheless, those calculations were then
used to predict K(θd) above and exclude soils from the analysis, for which K(θd) <

5 × 10−8 cm/s.
Some important additional comments need to be made. The fact that the critical

moisture content for percolation of the Hanford site soils (usually small clay con-
tents) correlated quite well with the value from the Danish soils [25] and their often
rather high clay contents will have several consequences for further analysis of the
predictability of θt. It may be important, however, that the Hanford site soils often
had 3–5 % clay sized particles and, though not often, sometimes up to 10 % or so.

8.4 Wet-End Deviations from Fractal Scaling of
Water-Retention Curves, and Discussion of the Critical
Volume Fraction for Percolation

In most cases the fractal predictions of water-retention curves also deviate from
experiment at water contents near saturation. These deviations involve predictions
of the water content that can be either too high (Fig. 8.12) or too low (Fig. 8.13).
Understanding of these deviations is at present inferior to that of the deviations at
low moisture contents, although it appears that on the whole such discrepancies
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Fig. 8.13 An example of a
wet-end deviation to lower
moisture contents than
predicted from fractal scaling.
This deviation is related to
finite-size effects, described
in percolation theory [20]

relate to lack of percolation of the air phase. In Fig. 8.14 the determination of the
wet-end moisture contents, θw, at which deviations from fractal scaling occurred, is
shown. Hunt and Gee [15] showed that, for a suite of approximately 40 Hanford site
soils θt was nearly the same as φ − θw, though perhaps slightly larger (Fig. 8.15).
The case where a higher tension must be reached then hA before air actually begins
to enter the soil, with consequent upward curvature of the water-retention curve

Fig. 8.14 From Hunt and Gee [15]. Determinations of wet-end moisture contents θw at which
deviation from fractal scaling of water retention occurs for four soils. The open circles are theory
(from Eq. (4.24)), the solid circles experiment. The fractal dimensionality for the pore space was
determined in Hunt and Gee [14] from the particle-size distribution and the porosity, and the air-en-
try head (hA) was used as an adjustable parameter. The wet-end deviations from fractal scaling are
indicated with arrows. Two soils from Hunt and Gee [14] are used for which the wet-end devia-
tion could clearly be seen, FLTF D11-06 (a) and VOC 3-0652 (b). For a number of the ITS soils,
such as 2-2227 shown here, θw was better determined from the bubbling pressure by the method
of Problem 8.1
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Fig. 8.15 Comparison for
the Hanford site soils of θt ,
determined from θd using
Eq. (6.23) with φ − θw, the
wet end deviation from fractal
scaling. θw determined as in
Figs. 8.12–8.14

exceeding the prediction from fractal scaling, could be reasonably interpreted using
percolation concepts. In some of these soils the actual value of θw could not be
determined directly but was calculated by the method presented in Problem 8.1.
But the case where air entered at lower tensions than expected seemed less easy
to interpret. Now, however, we can refer to Larson and Morrow [20] who showed
that the downward curvature is an artifact of finite size effects and disappears in the
limit of infinite systems. Consequently we postulate the following understanding: If
the system size is held constant, the variation in the wet-end deviation from fractal
scaling with medium characteristics, even if associated with a downward curvature,
does reflect a change in a critical air threshold.

The result that φ−θw for the Hanford site soils is very nearly the same as θt raises
the question of whether one should actually expect the critical volume fraction to
have the same value for air as for water. If the effects of wetting of surfaces are
neglected then it is possible for the two critical volume fractions to be the same. But
this is not a sufficient condition for equality. One must also have that the critical
moisture content for percolation be independent of the moisture content. While this
is not by any means guaranteed by theory, experiment appears to confirm that θt
is a constant, independent of moisture content (see the results for solute diffusion
in Chap. 7). The effects of water adsorbed to surfaces would be minimized when
the surface area to volume ratio of the soil is minimized, which would be the case
for porous media composed mainly of large particles. Clay minerals, due to their
lack of charge neutrality, are known to adsorb an especially large amount of water.
Practically speaking, media with very low or zero clay content (sand and silt only)
have relatively small surface area to volume ratios and in these media the fraction
of the water adsorbed on surfaces can be neglected. So the result that θw for the
Hanford site soils is very nearly the same as φ − θt is consistent for media with low
clay content, but the results of Moldrup et al. [25] for θt are interpreted in terms
of the adsorption of water on clay mineral surfaces, providing an apparent conflict.
An explanation for this puzzle may be given by a combination of the following
argument for θt and the results that R2 varied between 0.6 and 0.8 for the various
correlations (and the fact that the Hanford sites do contain some clay).
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How would one estimate the critical volume fraction for percolation in a porous
medium with insignificant adsorption of water to solid surfaces? Consider first a
network of tubes of uniform diameter and length placed on a lattice. The space
between the tubes can be considered the solid portion of the medium. In such a case
one can immediately deduce that the critical volume fraction for percolation must
be

Vc = pcφ (8.13)

and the critical volume fraction for percolation is a fraction of the porosity. Ex-
perimentally obtained values for very coarse soils [13] suggest that pc in three di-
mensions is typically on the order of 0.1, and one finds Vc = θt ≈ 0.1φ. For the
proportionality constant to be so small requires a rather large coordination number
for the pores, and it is also important that the pore space itself be well connected.
There is some evidence of this; Manwart et al. [24] report that 97.2 % of the pore
space in the Berea sandstone, and 99.4 % in the Fountainebleau sandstone belong
to the percolating cluster. In soils we expect these values to be higher. With in-
creasing clay content, however, a simple proportionality between Vc and φ becomes
inadequate [13]; either the proportionality constant pc tends to increase, or another
contribution to Vc must exist. Continued use of Eq. (8.13) with an increasing value
of Vc is not preferred for several reasons [13]. A second contribution to Vc comes
from water adsorbed on the surface of particles; this is a water content, which will
be present, but which does not contribute to capillary flow. It is this contribution
to Vc(= θt), which appears to have been detected in the diffusion experiments that
established the relationship Dpm/(Dwθ) = 1.1(θ − θt). Analysis of the experimen-
tal relationship θt = 0.039(A/V )0.52 showed [13] that this could be interpreted as
a surface water contribution on clay minerals as long as 3 − D ≈0.5. D = 2.5 is a
rather small value from the present perspective, although it has been stated [2] that
D values for clayey soils are typically in the range 2.5–2.6 (in contrast to coarser
soils).

On the basis of the above analysis it was concluded that a general expression for
θt should probably contain both contributions and look something like

θt − 0.1φ ∝
(

A

V

)3−D

(8.14)

Theoretical development does not really permit an accurate estimation of the pro-
portionality constant at present; one can also not use the experimental value from
Moldrup et al. [25] since that experimental regression did not include a term in-
dependent of surface area. Thus it is best to leave the result (8.14) in terms of a
proportionality. It is worthy of note that it is common in the porous media commu-
nity to speak of a “residual” water content, present after normal drainage of a soil.
Quoting Luckner et al. [23] by way of van Genuchten et al. [29] “The residual water
content, θr, specifies the maximum amount of water in a soil that will not contribute
to liquid flow because of blockage from the flow paths or strong adsorption onto
the solid phase.” Equation (8.14), with further developing and testing to clarify the
values of the constants, should prove a general means to estimate both contributions
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to θt. It is very important, however, that only the term pcφ would contribute to the
critical air fraction for percolation, since air is not wetting and does not adsorb to
the surface of any particles. Thus, except for very coarse soils, one should expect
that the critical air fraction for percolation should be much smaller than the criti-
cal moisture content. But for coarse soils these two values should usually be very
similar if not identical, as appears to be the case in Fig. 8.15.

Such a small value of pc ≈ 0.1 for a lattice model in three dimensions would im-
ply that the effective coordination number, Z, is 15 (using Zpc = d/(d −1)). Even a
face-centered cubic system has a value of Z of only 12, so this large value of Z sug-
gests that the typical coordination number is quite large. In fact, Jerauld et al. [17]
give a reasonable explanation for such a large Z value. In networks generated by
Voronoi tessellation these authors do find Z ≈ 15, making pc ≈ 0.1 a reasonable
choice for media with relatively small clay content.

Overall, pc ≈ 0.1 appears in so many different contexts in this book that there is
a motivation for understanding it.

8.5 General Formulation for Equilibrium and Analogy to Ideal
Glass Transition

Sections 8.2 and 8.3 demonstrate that reduction of the moisture content to values
near the threshold moisture content for percolation can easily cause experiments
involving changes in moisture content in porous media to fall out of equilibrium.
This process can also be called a kinetic transition, because on one side of the tran-
sition, the system obeys the ergodic hypothesis, but on the other side it does not,
whereas the transition point is not precisely defined on account of its dependence
on the rate of change of system parameters, and thus on experimental conditions.
A similar situation exists in the case of the glass transition in viscous liquids. As
the temperature of viscous liquids is reduced, the temperature dependent transport
properties slow down so much that it may be impossible for the liquids to attain
equilibrium with further reduction in temperature (on experimental time scales). All
geologists are probably familiar with the argument that window glass will flow if
given enough time (although the examples cited may not actually be evidence of
this). Many investigators have sought to relate the glass transition in viscous liquids
to a phase transition. What can be gained from a comparison between these systems
and concepts?

In an ideal glass transition a kinetic transition is underlain by a structural phase
transition, but the structural phase transition is never directly observed because the
system falls out of equilibrium first. Since the result is never directly observed, one
cannot measure directly a transport quantity that is approaching zero. Thus people
look for some length scale, which seems to be diverging in the vicinity (but slightly
below) the kinetic transition. Exactly this kind of result, Eq. (6.23) and the accom-
panying physics of a diverging correlation length, has now been obtained for porous
media, and the accompanying predictions regarding lack of equilibration apparently
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verified. Although similar evidence has been sought regarding the glass transition
in viscous liquids, it has never been found, and so it must be concluded that the
glass transition in viscous liquids is not an example of an ideal glass transition [10].
Nevertheless there is some benefit in a comparison, particularly in the matter of the
calculation of such a kinetic transition point. The transition point corresponds to a
temperature in the case of the glass transition, and a moisture content for porous
media.

The “kinetic” transition in viscous liquids is basically a case where the system
falls out of equilibrium and the ergodic hypothesis fails. The kinetic transition has
been defined to result when the time for mechanical relaxation exceeds 100 sec-
onds [10]. This is an imprecise definition and cannot be appropriate for all exper-
iments. The mechanical relaxation time is an exponential function of the temper-
ature, and relaxation times can thus increase very rapidly when the temperature is
lowered, if it is low relative to the fundamental scale of the exponential function
to begin with. In fact such an exponential dependence of the mechanical relaxation
time on temperature allows for a definition of the transition temperature.

In experiments on the glass transition the system is cooled at a constant rate and
at a given temperature, called the glass transition temperature, Tg, there is a sud-
den drop in the heat capacity of the system. For the calculation of Tg [9] a constant
cooling rate was represented as a staircase function with finite changes in tempera-
ture �T in times �t . The average slope �T/�t was constrained to equal the actual
dT /dt . The glass temperature was found by relating the temperature steps �T to the
time steps �t through the condition that the relaxation time of the system increases
by �t over the temperature range �T . The solution of this equation could be ob-
tained by numerical methods if the dependence of the relaxation time (α-relaxation
peak) on the temperature was known. The result could be verified to give the cor-
rect dependence of Tg on the cooling rate, even though this dependence was very
weak (logarithmic). Thus, even in the absence of an assumption of a special value
of T , for which motion was essentially frozen, the rapid slowing down of systems
represented by the exponential function was sufficient to define a kinetic transition
temperature, Tg.

In the actual calculation of the transition moisture content we approximate a
discontinuous function, the discrete changes, �h, in tension over discrete time in-
tervals, �t , by a continuous function [11], exactly the reverse of the situation for
the glass transition. This approximation allows a simple application of the chain
rule to relate theoretical and experimental quantities. Consider an experiment on a
column of height z. If the required value of dθ/dt is larger than the ratio of K(h) to
z ((cm/s)/cm), the column moisture content cannot change rapidly enough to adjust.
But the required value of dθ/dt is related to experimental quantities as follows [11]:

dθ

dt
= dh/dt

dh/dθ
≡ �h/�t

dh/dθ
= K(h)

z
(8.15)

If, through a procedure during which the tension h is increased episodically by
�h and a subsequent time interval �t is allowed for drainage, K(h) has finally
diminished to the extent that the right hand side can no longer exceed the left hand
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side of Eq. (8.15), then the time scale of the experiment must be increased, or the
system will fall out of equilibrium. Equation (8.15) can easily be solved for the time
interval, �t, as a function of K(h), z, and the derivative dh/dθ while dh/dθ can be
obtained from the appropriate equilibrium water retention function.

It may be of interest that while the glass transition in viscous liquids is apparently
not an example of an ideal glass transition, the drying of porous media is.

8.6 Oil Residuals

In the early 1980s Chandler et al. [4] produced a very nice analysis of 2D sim-
ulations of residual oil ganglia remaining after flooding with water. The total oil
remaining was a function of the width, y, of the channel flooded. We believe that
it is a valuable exercise to bring up these results again and discuss them from a
different perspective. In an infinite system the oil remaining would be equal to the
critical volume fraction. But, in finite two-dimensional systems, the total oil remain-
ing must be present only in finite clusters of sites, since it is not possible for both
the water and the oil phase to percolate simultaneously. In addition, clusters larger
than the width of the channel must drain, since they have access to the outside. Thus
the remaining oil is the difference between the critical volume fraction and the oil
drained. This result can be obtained by summing the total volume over all the finite
cluster contributions (of size less than y = rs = sσν ),

Voil ∝
∫ y

1
σν

1
s1s−τ ds = 1 − y

2−τ
σν (8.16)

Using Eq. (1.25), (τ − 2)/σ = β one finds that the remaining oil volume must
scale as Vc − y−β/ν , in agreement with the scaling results of Chandler et al. [4] and
with finite-size scaling. Consider that the fraction of sites connected to the infinite
cluster is (p − pc)

β , which implies a scaling with system size, y−β/ν . But the sites
not connected to the infinite cluster are those (oil-filled) sites left, ∝ Vc − y−β/ν .

Our analysis has the additional benefit that the analyses of Chaps. 9 and 10 rely
on cluster statistics of percolation based on the same kind of reasoning, but we have
been able to show that in the present context they give known results.

Note that, in this chapter, our theoretical calculations were confirmed by compar-
ison with about 50 water retention experiments with associated particle size data,
encompassing some 600 individual experimental results in each.

Problems

8.1 Calculate the “bubbling pressure” for a fractal model. Assume that air does not
begin to enter (bubble) until the air-allowable volume is a large enough fraction
of the porosity to percolate.
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8.2 It is a common practice in the porous media community to assume that the in-
terfacial tension is a more fundamental variable than the moisture content. Find
a reason why people might assume this. Hint: use the bubbling pressure result
from #7.1 and then calculate the pressure at which the water phase would be-
come discontinuous. Assume that both critical volume fractions are 0.1φ. You
should obtain a ratio for the two pressures of [(1 − 0.9φ)/(1 − 0.1φ)]1(/3−D) ≈
(1 − φ)1/(3−D). For typical soils (D = 2.8, φ = 0.4) this ratio is 1/7.6 (the ap-
proximation yields 1/12.9). Of course this ratio is smaller than the ratio of the
smallest to the largest pore size, and thus typical pressure saturation curves do
not, in the intermediate saturation regime, contain the full range of pore sizes
present.

8.3 Reevaluate the Wilkinson [30] treatment of hysteresis using moisture content
as the fundamental percolation variable rather than the pressure. Do his con-
clusions still hold? What physics could be responsible for the discrepancies
between the modified theory and experiment?

8.4 Compare the present derivation of oil residuals with the treatment of Chandler et
al. [4]. What does the comparison say about scaling arguments from percolation
theory?
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Chapter 9
Applications of the Correlation Length: Scale
Effects on Flow

In percolation theory, the fractal nature of large clusters near the percolation thresh-
old underlies some interesting scale dependences of conduction and transport prop-
erties. The correlation length gives a measure of the largest length scale at which
non-Euclidean, or fractal, geometry effects should be seen. This means that the cor-
relation length must be intimately connected with the quantity known in porous
media research communities as a representative elementary volume, or REV. Note
that the kind of finite-size scaling results reported in Sect. 2.4 will give results for
conduction that decrease with increasing size, however, in view of the fact that the
conductivity vanishes with approach to the percolation threshold. However, we can
show that calculations of conduction (or flow) based on critical path analysis can, in
principle, deliver increases in conductivity or permeability with increasing scale, if
the increase in spatial scale brings about an increase in the dimensionality of con-
duction. This result is based on the strong diminution of pc with increasing dimen-
sionality. In order to make such comparisons, however, we must be in possession of
the tools to calculate an REV, which is based on the correlation length. The actual
value of the correlation length will depend on geologic correlations since they can
set a fundamental length scale.

Even in the absence of geologic correlations, sedimentary deposits near the per-
colation threshold will exhibit correlations in medium type. One of the important
arguments of the works that this chapter is based on has been that, under com-
mon circumstances, a relevant correlation length may be constructed as the product
of a geologic factor and a statistical factor from percolation theory. In particular,
the correlation length in percolation theory is proportional to a (negative) power
of |p − pc| and a prefactor which, in a bond percolation problem, is proportional
to the length of a bond. In a geologic medium described in continuum percolation
theory, however, this quantity corresponding to a bond length is actually a geo-
logic correlation length. How these two factors can be separated is discussed be-
low.
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9.1 Representative Elementary Volume (REV)

The correlation length is the system-dependent parameter, which defines the struc-
ture of the dominant current-carrying (electric or fluid) paths. Refer back to Fig. 1.3.
The typical separation of the nodes is represented in this figure, and this separation
is equal to the correlation length, χ . The physical reason for this is that χ describes
the size of the largest holes above the percolation threshold. Furthermore, the tortu-
osity of the backbone of the largest clusters below the percolation threshold is the
same as the tortuosity of the links above the percolation threshold. The influence of
the blobs in calculating the conductivity is rather secondary since the most resistive
elements that cannot be avoided tend to be found in the portions of links without
blobs—by definition there is no alternative to the paths through these (except, in
the case of critical path analysis, to go to more resistive elements). In fact, as just
suggested, χ can be used to describe the structure of such paths in two different
contexts: (1) near the percolation transition it gives a characteristic separation of
the only possible paths of interconnected medium, which can be used to transport,
e.g., air, water, or electrical current, (2) far from the percolation threshold, applica-
tion of critical path analysis involves an optimization which leads to a calculation
of the separation of the paths along which the dominant transport occurs. In either
case, χ3 is effectively the representative elementary volume, or REV, because in
each case χ defines the length scale of the heterogeneity relevant for transport. In
earlier chapters critical path analysis was used to generate explicit expressions for
the correlation length. As long as the numerical coefficient in the proportionality
from percolation theory is not available, however, calculations using the correlation
length cannot reliably yield precise numerical coefficients for specific systems so
the results are given only in terms of system parameters. In this chapter some sys-
tems are treated for which there is little or no information regarding “microscopic”
variability, and the expressions derived contain further unknown constants. Thus the
development here is only diagnostic and not predictive. In Chap. 5 an example of
this type of argument (originally due to Shklovskii and Efros [38]) is given in the
problems with an at least semi-quantitative prediction.

9.2 Isolation of Geologic and Percolation Effects
on a Correlation Length

We propose that the percolation and geologic effects on a correlation length can be
isolated as follows. The research ideas presented in this section have been devel-
oped in parallel with Dr. Robert Ritzi and co-workers, and citations to their relevant
articles are given.

Consider first a medium which contains a small fraction of sands (<25 %,
say) and for which the remainder is composed of finer materials, such as muds.
Even though p < 0.25 it is nevertheless not unlikely that the sand fraction of the
medium is near the percolation threshold. Percolation thresholds tend to be lowered



9.3 Effects of Dimensional Cross-Overs on Conductivity 299

in strongly correlated systems [19, 25]. Geologically correlated systems are typi-
cally characterized by anisotropy while local correlations tend to make the system
smaller in a statistical sense. Both anisotropy [11] and small system size [30] tend
to reduce pc.

Discretize a representation of a natural medium in cubic grid blocks. Choose
each grid as sand or mud, associating the label chosen with the dominant volume
fraction in each block. In one dimension, the percolation probability is one so that
in a 1D transect the sand fraction is far below the percolation threshold, and even
the mud fraction is not close. Suppose then that one considers the statistics of one-
dimensional transects through such a medium. The correlations of the individual
grid cells will be at most minimally affected by the percolation variables, so that
any correlations are geologic in nature. If the geologic correlation structure is appro-
priate (for example exponential rather than power-law in form), these correlations
will be described by a typical length scale [12, 26], which we can call here, χ0,
and which has insignificant influence from percolation. The composite correlation
length in the three-dimensional medium will then be given by the product of the
geological factor, χ0 and a percolation function, |p − pc|−ν .

9.3 Effects of Dimensional Cross-Overs on Conductivity

A great deal of debate surrounds the issue of whether the hydraulic conductivity
can increase with the scale of the measurement. Given the fact that experiment has
repeatedly given such results, it seems obvious that the answer is yes. But this does
not seem to be the answer from percolation theory. To some this is the major un-
solved problem in subsurface hydrology. A few of the examples often quoted are:
Bradbury and Muldoon [4], Schad and Teutsch [33], Shouse et al. [39], Rovey and
Cherkauer [29], Sanchez-Villa et al. [32], Schulze-Makuch [34], Tidwell and Wilson
[43], [44], Schulze-Makuch and Cherkauer [36], Samper-Calvete and Garcia-Vera
[31], Schulze-Makuch et al. [35], Davy et al. [7], Paleologos et al. [24], Di Federico
and Neuman [8, 9], Di Federico et al. [10], Hunt [13, 14], Chen et al. [6], Martinez-
Landa et al. [21]; Zhang et al. [45], Zlotnik et al. [46], Hyun et al. [18], Neuman and
Di Federico [23]. Of the above, all publications except that of Shouse et al. [39] deal
with geologic scales. Some authors have contested some of the individual experi-
ments (e.g., [5]) and some authors have certainly reported theoretical descriptions
for which K diminishes with increasing scale [24]. In Chap. 9 it is shown that the
cluster statistics of percolation theory are clearly compatible only with a diminish-
ing value of K with increasing measurement scale. Nevertheless we feel that it is
necessary to discover why measurements of the hydraulic conductivity can increase
with increasing scale.

Of the above works, Davy et al. [7] and Neuman and co-workers look for theoret-
ical reasons to generate an increase in K with the scale of measurement. The works
of Neuman and co-workers are largely based on information from variograms, and
a concrete comparison between those works and percolation theoretical works does
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not yet exist. Davy et al. [7] propose an increase in connectivity with increasing
scale, but their model appears to generate a porosity which increases according to
a power of the measurement scale x. There is nothing wrong per se with a porosity
which increases with scale; the Rieu and Sposito [28] fractal model would allow an
increase of the form 1 − (r0/x)3−Dp, if the largest pore radius, rm, could be pro-
portional to the system size, x. However, a power-law form for the porosity can
exceed 1, while the Rieu and Sposito [28] model is limited by φ = 1. This matter
becomes partly semantic; it makes some sense to declare that a sample which falls
entirely within a given pore (or fracture) does not belong to the medium when the
property of interest is the porosity. But it makes no sense to exclude such a region
from the hydraulic conductivity. Why? A region of air that surrounded an instrument
would not be considered part of a solid medium, but the hydraulic properties of that
medium are defined exclusively by the pore space and to leave out the largest pores
at the smallest scales is to introduce a scale-dependent bias into the measurement.

There are other reasons for an apparent increase in K with scale x that can be
easily discovered within the framework of percolation theory (and one example is
given below), but it turns out that such results are not indicative of a scale effect
per se. Although the relevance of percolation theory to geologic scales has some-
times been called into question, the same general difficulties to describe the flow
and transport in such media exist, e.g., flow channeling [22], which Shah and Yort-
sos [37] demonstrate is also best treatable in a framework such as that of Katz and
Thompson’s [20] critical path analysis.

The fact that critical values of the percolation probability, pc, are such strong
functions of dimensionality, together with the fact that for strongly disordered media
the “upscaled” value of a conduction or flow property depends so sensitively on pc
means that a cross-over in the dimensionality of conduction can produce a very large
effect in the effective transport (or flow) parameter. Thus it is of great importance
to be able to identify what physical constraints on conduction lead to dimensional
constraints. The important quantity to determine relates, as one might expect, to an
REV, or in the language of percolation theory, to the correlation length.

When conduction is isotropic, the analysis is relatively simple and unsurprising.
Consider first a cylindrical system, such as a heterogeneous non-metallic wire. How
thick can such a wire be before conduction along it is not one-dimensional? The
maximum thickness can be obtained by considering an infinitely large and equidi-
mensional system of such material, calculating the correlation length (according to
either problem above) and comparing χ with the diameter of the wire, d . If d > χ ,
the system is not strictly one-dimensional and increasing d values will eventually
make the conduction of the system three-dimensional. If d < χ , however, for large
lengths, the cylinder exhibits strictly one-dimensional conduction. As an alterna-
tive, consider an infiltration experiment, in which a grid is mapped out and metallic
plates each some specific length, such as 1 m, are inserted into the soil to divide it
into a simple square grid [39]. How small can the separation of these plates be made
while maintaining three-dimensional conduction in the vertical direction? Again the
answer is based on the comparison of the separation of the dividing plates with the
correlation length. However, the depth of insertion of the plates is also an impor-
tant input. Even if the separation of the plates is smaller than the correlation length,
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if the depth is equally small (for isotropic conduction), the problem involves only
finite-size effects, not dimensionality effects. Such a simple picture is complicated
by anisotropy, but it is nevertheless possible to take a number of anisotropic systems
and transform the medium to isotropic form [42]. Such a coordinate transformation
affects the volumes of existing or proposed experiments as well, however, and then
the problem is to analyze the transformed experimental volumes in terms of the
correlation length.

In fact, any of the sort of problems dealt with in this chapter in terms of the
correlation length can also be treated in greater depth using the cluster statistics
of percolation in subsequent chapters. Nevertheless, when it is possible to make
a simple calculation based on the correlation length, the labor saved may be well
worth the choice.

For conduction through a rectangular solid to be truly 3D, all dimensions of the
solid must be larger than the correlation length, χ . For solid-state physics treatments
of the dimensionality of conduction in terms of the correlation length see Shklovskii
and Efros [38] and Raikh and Ruzin [27]. In three dimensions χ behaves as,

χ = χ0(p − pc)
−ν (9.1)

where ν = 0.88 [40]. Here χ0 is a fundamental length, which we take here as being
a typical length of a single resistor. An appropriately shaped volume, which is in
principle compatible with experiments for treating upscaling in isotropic 3D sys-
tems, is a cube. As Tartakovsky and Neuman [42] point out, the axes of anisotropic
systems can be rescaled to give equal conductances in each direction. The appro-
priately shaped upscaling volume for an anisotropic system with, e.g., K values
1000 times larger in the horizontal directions is a rectangular solid with equal hor-
izontal dimensions, but a vertical dimension 10001/2 ≈ 31 smaller [15]. The cross-
sectional area on the sides is diminished by a factor 10001/2, reducing its conduc-
tance accordingly, while the length of the vertical dimension is diminished by the
same factor, increasing its conductance by the same factor. This leaves equal con-
ductances in each dimension. The reason why such a “flattened cube” is the ap-
propriate system shape for upscaling, is that the fundamental relationships of the
system dimensions to the details of the conduction process cannot change differ-
ently in different directions as the scale of the problem is increased. Use of, e.g.,
a cubic volume for the purposes of scaling up the hydraulic conductivity in the pres-
ence of such anisotropy would be equivalent, in the isotropic case, to using a prism
with long (vertical) axis 31 times as long as the horizontal axes (Fig. 9.1 from [15]).
In such a case it is easily possible for the correlation length to be shorter than the
vertical dimension and larger than the horizontal dimensions. This means that for
vertical transport, the flow (current) would like to exit the narrow volume, but can-
not. Constraining the flow to remain within the volume is a dimensional constraint.
If all axes are subsequently lengthened by, say, a factor 31, certainly all dimensions
will be larger than the correlation length, whereupon the flow would be 3D, with K

as calculated for a 3D medium. This constitutes a change in dimensionality, from
1 to 3, that occurs as a result of the increase in scale, but is not a scale effect per
se, since it could be eliminated by choosing the appropriate experimental volume
shape.
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Fig. 9.1 A schematic depiction of a medium with much higher horizontal connectivity than verti-
cal connectivity and the correlation lengths in each direction. A rescaling of length in the horizontal
coordinates transforms the system to an isotropic system, but also shrinks the horizontal dimen-
sions of the experimental volume. Now the correlation length is the same in each direction, but it
is larger than the horizontal dimension of the experimental volume and smaller than the vertical
dimension, providing for 1D conduction

Instead of considering the equidimensional anisotropic case, consider for clarity
the transformed medium with elongated volume and isotropic K (Fig. 9.1). Rather
than considering flow along the vertical axis to go through a qualitatively defined
cross-over from 1D flow to 3D, the method constructed here for solution of this
problem is to choose a maximum R, such that the value of the correlation length, χ ,
is always constrained to be smaller than or equal to the horizontal dimensions of the
system. If χ is smaller than the horizontal dimensions, it is certainly smaller than
the vertical dimension. This gives a continuous dependence of the effective value of
the critical volume fraction and thus of the value of the limiting resistance on the
size of the system. In the limit that the system size goes to infinity, this constraint
becomes inconsequential and the result must conform to the 3D value of K . In the
limit of small system size, pc must approach 1 and the result for K must conform
to the value for 1D flow. χ is constrained to be smaller than the dimensions of the
system by the simple matter of making an effective pc larger than the 3D value,
exactly as expected from restricted dimensionality. In such a case the flow paths
may appear to be three-dimensional at all scales, but the changing value of pc is a
result of the dimensional cross-over. So now let χ = x = V 1/3, the original system
size, and calculate how much larger p would have to be than pc for a given x. The
result is [15],

p = pc +
(

χ0

x

) 1
ν ; V = Vc +

(
χ0

x

) 1
ν

(9.2)

where the second form of the equation is the equivalent form for a continuum with
volume fraction, V , replacing p, (and Vc replacing pc). The reason why the second
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form of the equality can be used by analogy is that the correlation length, χ , is
expressed in terms of V and Vc for continuum percolation in the same way that it
is expressed in terms of p and pc for bond percolation. Equation (9.2) obviously
gives V = Vc for a system of infinite size, x → ∞. For calculations of finite size
corrections, Eq. (9.2) implies p > 1 in the limit of x < χ0, an unphysical limit,
which can be approximately corrected by a small change in Eq. (9.2) to [15],

V = Vc +
(

χ0

χx + x

) 1
ν

(9.3)

The basis for this modification is the physical requirement that χ be less than x+χ0,
rather than merely x, compensating for the finite separation of resistances arising
from their own intrinsic length, χ0. Such a modification is clearly unnecessary for
large x, but, in order for the formulation to make sense at small x it must be added.
Equation (9.3), while still approximate, leads to no significant problem with p ex-
ceeding 1 as long as pc(αc) is very small, as can be the case in highly correlated
systems [19, 25] and is assumed to hold here. The limiting value, pc = 1, for small
system sizes is a characteristic of strictly 1D conduction, and means that the most
resistive element in the system can no longer be avoided. Use of a formulation such
as Eq. (9.3) to find the change in Vc for small system sizes has the potential defect
that the proportionality for the correlation length is being used in a range where it
need not be accurate, far from percolation.

We can apply Eq. (9.3) to the continuum percolation calculation of Rieu and
Sposito [28]. The Rieu and Sposito [28] model has been variously applied to soil
porosity and to fracture systems. The Rieu and Sposito [28] fractal fragmentation
model for soils expresses the total porosity as, φ = 1 − (r0/rm)3−D in terms of the
fractal dimensionality, D, and the minimum and maximum radii, r0 and rm, over
which the fractal description holds. This model can also be used for fracture net-
works, but in this case r0 and rm refer to the smallest and largest fracture apertures,
respectively. To calculate the rate-limiting resistance on the critical path one needs
an expression for the fractional pore (or fracture) volume, W(r), with pore radius (or
fracture aperture) between r and r + dr , i.e., the pore volume probability density
function. This expression is W(r) = ((3 − D)/r3−D

m )r2−D [17], which yields the
known porosity, assumed to be the same for the fracture application. In the fully 3D
case, under saturated conditions, the Rieu and Sposito model yields for the smallest
aperture, rc, on the optimal system traversing path,

Vc = 3 − D

r3−D
m

∫ rm

rc

drr2−D; rc = rm(1 − Vc)
1/(3−D) (9.4)

Note that in the limit Vc → 0, rc → rm meaning that with a critical volume fraction
of zero, percolation is possible just using the largest fractures. Applied to fracture
networks, in which the solid medium is ignored, Eq. (9.4) is best rewritten [15],

Vc =
[

1

1 − (
r0
rm

)3−D

][
3 − D

r3−D
m

]∫ rm

rc

drr2−D (9.5)
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where a fraction Vc of the total fracture volume, 1 − (r0/rm)3−D , (rather than a
fraction of the total system volume), is sufficient to guarantee percolation through
the fractures.

In order to find out how the smallest pore size changes as the critical volume
fraction approaches 1 (the fully 1D limit), substitute Eq. (9.3) into Eq. (9.5) with the
new V > Vc taking the place of Vc, and letting (for convenience and simplicity) the
original Vc → 0 for infinite system size,

(
1

1 − [
r0
rm

]3−D

)(
3 − D

r3−D
m

)∫ rm

rc

drr2−D =
(

χ0

χ0 + x

) 1
ν

(9.6)

Equation (9.6) yields,

rc = rm

[

1 −
(

1 −
[

1

R

]3−D)(
χ0

χ0 + x

)1/ν] 1
3−D

(9.7)

with R ≡ rm/r0. Using (for 3D saturated media) K ∝ r2
c , consistent with Hunt and

Gee [17] (and Katz and Thompson [20], and in fact all the methods summarized by
Bernabe and Bruderer [2]), and expressing K(x) in terms of the value K(3D) for
x → ∞, valid in 3D one finds [15],

K(x)

K(3D)
=

[

1 −
(

1 −
[

1

R

]3−D)(
χ0

χx + x

)1/ν] 2
3−D

(9.8)

Because Eq. (9.8) is expressed as a ratio of K(x)/K(3D), the complications arising
from the fact that even in an infinite system p is slightly larger than pc can be
neglected, just as these same complications were neglected in the calculation of the
ratio of the unsaturated to the saturated hydraulic conductivity.

It should be noted that the general framework of the calculation given here would
not change if the values of the hydraulic conductivity in the vertical and horizontal
dimensions were the same, but the correlations of the hydraulic conductivity in the
horizontal direction were much larger than the vertical direction. Use of a correla-
tion length based treatment of a dimensional cross-over would still be appropriate.
Now the correlation length from percolation theory would be larger in the horizontal
direction than in the vertical because the random selection of a highly conductive el-
ement in the horizontal direction would more likely (in comparison with the vertical
direction) be associated with other highly conductive elements in the same direc-
tion too, not simply because most connections in that direction were larger. Such
conditions could be consistent with horizontal layering of sedimentary facies.

Field data from Schulze-Makuch and Cherkauer [36], as well as some other
sources [29] are nominally consistent with hydraulic conductivity proportional to
power laws of the support volume, K ∝ V m, over five to six orders of magnitude of
volume V and 3–5 orders of magnitude of K . Reported powers, m, range from 0.5
to nearly 1. Represented as log(K) vs. log(V ), the data appear to curve towards the
horizontal at very small V , and also flatten at large V . Fits with data have simply
employed power laws with the above values of m for small V and a horizontal line
representing a constant K at large V .
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9.4 Comparison with Field Data

In Fig. 9.2 all scale-dependent data for K (250 measurements) excluding capacity
tests, which showed little trend, from Schulze-Makuch [34] are plotted as log K vs.
log V , where V is a water volume, assumed here to be proportional to the solid vol-
ume. Almost 200 individual experiments are represented, one of the richest sources
of data on this phenomenon. The data from Schulze-Makuch [34] certainly incor-
porated fracture flow, at least at larger support volumes. To fit these data, R = 2500,
D = 2.98, and K(3D) = 0.007 m/s were chosen. This combination of R and D is
consistent with a “fracture” porosity of φ = 0.14. However, the result is quite insen-
sitive to the chosen D, and values of 2.97 and 2.95 fit the data equally well. These are
consistent with fracture porosity values of φ = 0.21 and 0.32, respectively, meaning
that the theory is not particularly sensitive to the value of the porosity chosen. The
values of “vuggy” porosity for small cores quoted in Schulze-Makuch [34] are 9 %
or lower, though these values may account for 90 % of the total core porosity in
some cases. A “fracture” porosity is mentioned, but no values are given. The se-
lected value of R implies that if the smallest fracture has an aperture of e.g., 40 μm,
the largest has an aperture of 10 cm. While this is certainly a large range, dissolu-
tion of fractured carbonates can produce fractures over a wide size range. Although
most of the data do appear to fit the same trend, the comparison made here, which
uses all the data simultaneously, may not be appropriate. If individual facies were
analyzed separately, the range of K values, and thus ratios of rm to r0, would be
smaller, consistent with smaller porosities.

The horizontal asymptotes in these graphs correspond to ensemble averages for
pure 1D (αc = 1) and 3D (with vanishing critical volume fraction) conduction, re-
spectively. The ratio of the values of K in these two asymptotes is, by construc-
tion, R2. If a more realistic finite, but small, value of αc were chosen, the ratio of
the values of K at the asymptotes would be reduced somewhat, since rc(3D) < rm
in that case.

Clearly some of the data do not follow the theoretical curve plotted. Thus we
chose to display the data again (Fig. 9.3), but with the uncertainty generated by
finite size complications and described by the cluster statistics of percolation the-
ory (Chap. 10), and for which we displayed the distinct data sets enumerated by
Schulze-Makuch. For the uncertainty calculation we simply took the parameters
from Chap. 10 (e.g., D = 2.95, instead of 2.98), for which little difference in the
expected dependence of K on volume can be seen when compared with Fig. 9.2.
Here we can see that the uncertainty calculation from Chap. 10 does quite well in
describing the variability of K within a given unit or facies (or location), while the
outlying values at large V and smaller K , in particular, are also aggregated within
given data sets. This result supports our presumption that much of the spread in K

values at a given scale comes from the variability in the media investigated.
It is also possible to compare the values of these parameters with parameters from

soils, to which the Rieu and Sposito [28] model has been applied. Note that while
D = 2.95 is larger than typical values quoted (closer to 2.8 for soils [3]), values as
high as 2.95 have been reported in Hanford soils [16]. The associated porosity (with
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Fig. 9.2 Comparison of the prediction of Eq. (9.8) with the experimental data of Schulze-Makuch
[34] for fracture networks in a carbonate aquifer. The experimental data are given by the open
triangles. The parameters are D = 2.98 and rm/r0 = 2500

one exception) of the 45 Hanford soils ranged from φ = 0.24 to φ = 0.54, with the
smaller φ values associated with the larger D values. Further, although R = 5000
is large, ratios of maximum to minimum pore sizes as high as 250 were described
within centimeter sized core samples for Hanford soils. A related implication is that
the same physical mechanism as described here could generate a scale effect on K

of over four orders of magnitude (up to 250 × 250) in Hanford soils with significant
clay layers as well. See Sect. 12.4 for a treatment of such anisotropy in the Hanford
subsurface.

If the present theoretical description forms the basis for the observed scale depen-
dence of K in anisotropic porous media, then it is possible, in principle, to conduct
experiments in the same media, which do not show a scale effect.

One means to avoid such a scale dependence in anisotropic media would be to use
experimental volumes with shapes elongated appropriately (by the square root of the
ratio of K values) in the direction(s) of highest K values. However, this can be an
easier exercise in lab experiments than it is in the field. Such experimental construc-
tions are mathematically equivalent to isotropic media investigated with equidimen-
sional support volumes, for which K diminishes with increasing size. The reason
why K diminishes asymptotically to its infinite system value in that case is, that
the dimensional cross-over with increasing system size described here is eliminated
when the system is isotropic and the experimental volume equidimensional. The ba-
sis for the calculation is that finite size corrections to the infinite system hydraulic
conductivity, as calculated from the effects of finite-sized system-spanning clusters,
are always positive, but diminish as a negative power of the system size, because
of the reduction in cluster numbers with increasing cluster size. These calculations
were first given in Hunt [13] and supporting simulations were reported in Hunt [14].
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Fig. 9.3 Replot of the data of Fig. 9.2 showing that individual series of data points corresponding
to specific experiments do tend to conform to the relatively narrow spread of values predicted for a
single particular medium from Chap. 10. In this figure we actually use D = 2.95, but the difference
between the two predictions is very small, if one compares with Fig. 10.4

This is a fundamental argument for associating the increase in K in anisotropic
media with the dimensional cross-over rather than the increase in scale [15].

A second means to avoid seeing a scale effect on K in anisotropic media is to
investigate volumes large enough that the dimensional cross-over is not visible (the
296 capacity tests from Table V of [34]). For those data this limit is almost reached
as seen in Fig. 9.4. The mean of the slopes in the three cases used for comparison
(Table IV.8, IV.7, and Well DS5, also shown in Fig. 9.3) is 0.14. Although the slope
in the capacity tests is 0.19, the R2 value was essentially zero, suggesting that the
capacity tests were performed at scales large enough that the dimensionality restric-
tions did not apply. The purpose of redisplaying the data from Table IV.8 and IV.7
(and Well DS5) is that, whereas their presence helped demonstrate the cross-over to
the asymptotic 3-D behavior in Fig. 9.3, their presentation in Fig. 9.4 demonstrates
their fundamental consistency with the large amount of additional data from the ca-
pacity tests. And the additional data from the capacity tests reveals the large amount
of spread in field measurements of the hydraulic conductivity that are not restricted
to a given well or facies.
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Fig. 9.4 A plot of the
capacity tests (also from
Schulze-Makuch) at larger
typical spatial scales showing
the relative insensitivity of
the observed data range to the
scale of the measurements

9.5 Effects of Hydrophobicity on Water Uptake of Porous Media

It has been regarded as puzzling that the existence of a few hydrophobic particles
(ca. 5 %) in a porous medium could prevent water uptake at negative pressures
(thus preventing spontaneous uptake of water). The puzzle likely arises from an
incorrect perspective. It is true that it does not seem reasonable that a fraction of
hydrophobic particles as small as 3–5 % could make an entire medium hydrophobic,
but this perspective ignores the need to get the water into the medium. The water
follows flow paths, whose separations are governed by the correlation length from
percolation theory. The fact that the pressure at which water normally enters the
porous medium corresponds to the percolation transition means that it is possible
that a very small change in conditions can have a large effect on the flow paths.

Consider the following experimental arrangement [1]. From a large quantity of
blasting sand a fraction was treated with cyclo-octanol, a chemical with extreme
hydrophobic tendencies. This fraction was then mixed in at various fractions from 1
to 8 %. If the concentration of hydrophobic particles is N , and the typical diameter
of the particles is d , then the typical separation of such particles must be approx-
imately (d)N−1/3. When water enters the medium the separation of the paths of
water flow is equal to χ , which must be proportional to d(θ − θt)

−0.88. Use of the
factor d acknowledges that a fundamental length scale proportional to the particle
sizes must exist. Clearly water cannot access the major portion of the medium unless
χ < (d)N−1/3, because otherwise it would be impossible to get the water between
the hydrophobic particles. But such a small value of the correlation length can only
be obtained when the moisture content (or allowed moisture content in the present
case) is much larger than the critical moisture content for percolation.

Consider the following thought experiment. Start with a dry medium without
hydrophobic particles and begin to decrease the tension, h. When h reaches hc,
defined in the previous chapter, water will begin to enter the medium. However, at
this tension the infiltration paths are infinitely far apart. With a slight reduction in
h, the path separation drops to, say, somewhere between one and ten per sample. If
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even a small fraction of the normal sand grains had been replaced by hydrophobic
grains, then these paths would have been interrupted and it would not be possible to
bring water to the interior of the medium without running into hydrophobic grains.
Water can be forced past hydrophobic grains at sufficiently large positive pressures,
but in our case the pressure is still negative. So a further slight reduction in the
magnitude of the pressure has little or no effect on the interaction of water with
the hydrophobic grains, but it has a large effect on the separation of the infiltration
paths, which becomes much smaller. This effect is prominent because the value
hc corresponds to the percolation phase transition. If the value for the correlation
length is equated to the separation of the hydrophobic particles one can calculate
the smallest value of the effective moisture content, for which the infiltration path
separation is small enough to wet the interior. If the value of the moisture content
needed is as large as the porosity, then it would be impossible to wet the interior of
the system without forcing water past individual hydrophobic grains, which requires
a positive pressure. Thus,

N− 1
3 d ≈ d(φ − θt )

−0.88 (9.9)

Solution of Eq. (9.9) for N (and using θt ≈ φ/10) yields,

N = (0.9φ)2.64 (9.10)

Steenhuis et al. [41], which for typical porosities of about 0.4 yields about 0.067. In
fact the Bauters et al. [1] sand from the previous section has porosity 0.4 and critical
volume fraction 0.048, which would yield a slightly smaller value for N (0.063).
Nevertheless one would expect that at a concentration of roughly 6 % hydrophobic
particles a typical soil would already become water repellent. Experiment shows
that water repellency for the relevant soil from Bauters et al. [1] already sets on at a
concentration of about 5.5 % in a soil with porosity 0.4 and critical volume fraction
approximately 0.04. Such a close agreement with experiment may be at this stage
merely fortuitous, since all numerical constants in Eq. (9.9) have been suppressed.
However, it is important that the predicted result, because of the 2.64 power, is
much smaller than 1, and is more nearly on the order of 1 %–10 %. Solution of the
problem below should help to convince students that the theoretical description is
indeed accurate.

Problem

9.1 Suppose you know experimentally the water imbibition curve for a hydrophilic
medium (zero percent hydrophobic particles). Using the calculation above for
the modification to the effective critical moisture content for percolation (and
water uptake) due to the presence of hydrophobic particles, then describe a
technique, which would allow you to predict the imbibition curve for your sys-
tem (with a prescribed fraction of hydrophobic particles). Use the results from
Chap. 8 to predict the imbibition curve of any arbitrary medium (without hy-
drophobic particles) and then apply the procedure you just described to get a
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family of imbibition curves with varying fractions of hydrophobic particles.
Compare your results with Fig. 10.2.

References

1. Bauters, T.W.J., DiCarlo, D.A., Steenhuis, T.S., Parlange, J.-Y.: Preferential flow in water-
repellent sands. Soil Sci. Soc. Am. J. 62, 1185–1190 (1998)

2. Bernabe, Y., Bruderer, C.: Effect of the variance of pore size distribution on the transport
properties of heterogeneous networks. J. Geophys. Res. 103, 513 (1998)

3. Bittelli, M., Campbell, G.S., Flury, M.: Characterization of particle-size distribution in soils
with a fragmentation model. Soil Sci. Soc. Am. J. 63, 782–788 (1999)

4. Bradbury, K.R., Muldoon, M.A.: Hydraulic conductivity determinations in unlithified glacial
and fluvial materials. In: Nielson, D.M., Johnson, A.I. (eds.) Ground Water and Vadose Zone
Monitoring. ASTM STP, vol. 1053, pp. 138–151 (1990)

5. Butler, J.J., Healey, J.M.: Relationship between pumping-test and slug-test parameters: scale
effect or artifact? Ground Water 36, 305–313 (1998)

6. Chen, G., Illman, W.A., Thompson, D.L., Vesselinov, V.V., Neuman, S.P.: Geostatistical, type
curve and inverse analyses of pneumatic injection tests in unsaturated fractured tuffs at the
Apache Leap Research Site near Superior Arizona. In: Faybishenko, B., et al. (eds.) Dynamics
of Fluids in Fractured Rocks. Geophysical Monograph, vol. 122, pp. 73–98. AGU, Washington
(2000)

7. Davy, P., Bour, O., Darcel, C., De Dreuzy, J.: Permeability of 2D multi-scale fracture net-
works. Eos Trans. AGU 83(47) Abstract H71B-0822 (2002)

8. Di Federico, V., Neuman, S.P.: Scaling of random fields by means of truncated power vari-
ograms and associated spectra. Water Resour. Res. 33, 1075–1085 (1997)

9. Di Federico, V., Neuman, S.P.: Flow in multiscale log conductivity fields with truncated power
variograms. Water Resour. Res. 34, 975–987 (1998)

10. Di Federico, V., Neuman, S.P., Tartakovsky, D.M.: Anisotropy, lacunarity, and upscaled con-
ductivity and its autocovariance in multiscale random fields with truncated power variograms.
Water Resour. Res. 35, 2891–2908 (1999)

11. Garboczi, E.J., Snyder, K.A., Douglas, J.F., Thorpe, M.F.: Phys. Rev. E 52, 819–828 (1995)
12. Guin, A., Ritzi, R.: Studying the effect of correlation and finite-domain size on spa-

tial continuity of permeable sediments. Geophys. Res. Lett. 35, 10 (2008). doi:10.1029/
2007GL032717

13. Hunt, A.G.: Upscaling in subsurface transport using cluster statistics of percolation. Transp.
Porous Media 30(2), 177–198 (1998)

14. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conduc-
tances. Adv. Water Resour. 24(3,4), 279–307 (2001)

15. Hunt, A.G.: Scale-dependent hydraulic conductivity in anisotropic media from dimensional
cross-over. Hydrogeol. J. 14, 499–507 (2006)

16. Hunt, A.G., Gee, G.W.: Water retention of fractal soil models using continuum percolation
theory: tests of Hanford Site soils. Vadose Zone J. 1, 252–260 (2002)

17. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porous media: compar-
ison with examples from the Hanford Site. Adv. Water Resour. 25, 129–146 (2002)

18. Hyun, Y., Neuman, S.P., Vesselinov, V.V., Illman, W.A., Tartakovsky, D.M., DiFederico, V.:
Theoretical interpretation of a pronounced permeability scale-effect in unsaturated fractured
tuff. Water Resour. Res. 38, 1092 (2002)

19. Ioannidis, M.A., Chatzis, I.: The effect of spatial correlations on the accessibility characteris-
tics of three-dimensional cubic networks as related to drainage displacements in porous media.
Water Resour. Res. 27, 1777 (1993)

20. Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys.
Rev. B 34, 8179–8181 (1986)

http://dx.doi.org/10.1029/2007GL032717
http://dx.doi.org/10.1029/2007GL032717


References 311

21. Martinez-Landa, L., Carrera, J., Guimera, J., Vasquez-Suñe, E., Vives, L., Meier, P.: Method-
ology for the hydraulic characterization of a granitic block. In: Stauffer, F., Kinzelbach, W.,
Kovar, K., Hoem, E. (eds.) Calibration and Reliability in Groundwater Modeling: Coping with
Uncertainty, ModelCARE 99. IAHS Publication, vol. 265, pp. 340–345. IAHS Press, Walling-
ford (2000)

22. Moreno, L., Tsang, C.F.: Flow channeling in strongly heterogeneous porous media: a numeri-
cal study. Water Resour. Res. 30, 1421 (1994)

23. Neuman, S.P., Di Federico, V.: Multifaceted nature of hydrogeologic scaling and its interpre-
tation. Rev. Geophys. 41, 1014 (2003)

24. Paleologos, E.K., Neuman, S.P., Tartakovsky, D.M.: Effective hydraulic conductivity of
bounded strongly heterogeneous porous media. Water Resour. Res. 32, 1333–1341 (1996)

25. Prakash, S., Havlin, S., Schwartz, M., Stanley, H.E.: Structural and dynamical properties of
long-range correlated percolation. Phys. Rev. B 46, R1724 (1992)

26. Proce, C.J., Ritzi, R.W., Dominic, D.F., Dai, Z.X.: Modeling multiscale heterogeneity and
aquifer interconnectivity. Ground Water 42, 658–670 (2004)

27. Raikh, M.E., Ruzin, I.P.: Size effect of the longitudinal hopping conduction of a narrow 2-
dimensional channel. Phys. Rev. B 4(2), 11203–11207 (1990)

28. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties I. Theory.
Soil Sci. Soc. Am. J. 55, 1231 (1991)

29. Rovey, C.W. II, Cherkauer, D.S.: Scale dependency of hydraulic conductivity measurements.
Ground Water 33, 769–780 (1995)

30. Sahimi, M.: Flow phenomena in rocks—from continuum models to fractals, percolation, cel-
lular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993)

31. Samper-Calvete, F.J., Garcia-Vera, M.A.: Inverse modeling of groundwater flow in the semi-
arid evaporitic closed basin of Los Monegros, Spain. Hydrogeol. J. 6, 33–49 (1998)

32. Sanchez-Villa, X., Carrera, J., Girardi, J.P.: Scale effects in transmissivity. J. Hydrol. 183,
1–22 (1996)

33. Schad, H., Teutsch, G.: Effects of the investigation scale on pumping test results in heteroge-
neous porous aquifers. J. Hydrol. 159, 61–77 (1994)

34. Schulze-Makuch, D.: Facies Dependent Scale Behavior of Hydraulic Conductivity and Lon-
gitudinal Dispersivity in the Carbonate Aquifer of Southeastern Wisconsin. Dissertation, Uni-
versity of Wisconsin, Milwaukee (1996)

35. Schulze-Makuch, D., Carlson, D.A., Cherkauer, D.S., Malik, P.: Scale dependency of hy-
draulic conductivity in heterogeneous media. Ground Water 37, 904–919 (1999)

36. Schulze-Makuch, D., Cherkauer, D.S.: Variations in hydraulic conductivity with scale of mea-
surement during aquifer tests in heterogeneous, porous, carbonate rocks. Hydrogeol. J. 6, 204–
215 (1998)

37. Shah, C.B., Yortsos, Y.C.: The permeability of strongly disordered systems. Phys. Fluids 8,
280–282 (1996)

38. Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors. Springer, Hei-
delberg (1984)

39. Shouse, P.J., Ellsworth, T.R., Jobes, J.A.: Steady-state infiltration as a function of measure-
ment scale. Soil Sci. 157, 129–136 (1994)

40. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor and Francis,
London (1994)

41. Steenhuis, T., Hunt, A.G., Parlange, J.-Y., Ewing, R.P.: Assessment of the application of per-
colation theory to water-repellent soils. Aust. J. Soil Res. 43, 357–360 (2005)

42. Tartakovsky, D.M., Neuman, S.P.: Transient effective hydraulic conductivity under slowly and
rapidly varying mean gradients in bounded three-dimensional random media. Water Resour.
Res. 34, 21–32 (1998)

43. Tidwell, V.C., Wilson, J.L.: Laboratory method for investigating permeability upscaling. Wa-
ter Resour. Res. 33, 1067–1616 (1997)



312 9 Applications of the Correlation Length: Scale Effects on Flow

44. Tidwell, V.C., Wilson, J.L.: Heterogeneity, permeability patterns, and permeability upscaling:
physical characterization of a block of Massillon sandstone exhibiting nested scales of hetero-
geneity. SPE Reserv. Eval. Eng. 3, 283–291 (2000)

45. Zhang, D., Zhang, R., Chen, S., Soll, W.E.: Pore scale study of flow in porous media: scale
dependency, REV, and statistical REV. Geophys. Res. Lett. 27, 1195–1198 (2000)

46. Zlotnik, V.A., Zurbuchen, B.R., Ptak, T., Teutsch, G.: Support volume and scale effect in hy-
draulic conductivity: experimental aspects. In: Zhang, D., Winter, C.L. (eds.) Theory Model-
ing, and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neu-
man’s 60th Birthday, vol. 348, pp. 191–213. Geological Society of America, Boulder (2000)



Chapter 10
Applications of the Cluster Statistics

10.1 Spatial Statistics and Variability of K from Cluster
Statistics of Percolation Theory

This chapter presents a conceptually straightforward treatment of spatial correla-
tions of “random” heterogeneous media, but does not intend to capture at this point
even a majority of the actual behavior. A great deal of work still needs to be done
since what has been accomplished so far neglects the expected geological complica-
tions due to patterns of deposition (on a wide range of scales), dewatering, alteration,
deformation, and fracture. A fundamental point of this chapter will be that, even if a
medium itself does not exhibit correlations, the transport properties of this medium
will be correlated over distances which can be very large. In fact a simple physi-
cal result emerges, namely that the length scale of correlations in the measurement
of a conduction process is directly proportional to the size of the volume of mea-
surement ([2], given in Sect. 10.3 here), known in the hydrologic community as the
“support” volume. In other words, the range of the variogram is proportional to the
scale of the measurement. This result is observed over 3–4 orders of magnitude of
length, i.e. over 10+ orders of magnitude of the volume [6]. When considered in
conjunction with scaling of the dispersivity (Chap. 11), for which the support vol-
ume also plays a dominant role, and for which the starting point of the derivation is
also the cluster statistics of percolation, we suggest that the result for the variogram
is a direct consequence of, and clear evidence for, the relevance of percolation the-
ory.

The concepts here will be developed first, however, for simple models of solid
state problems, for which initial calculations have already been presented, and for
which relatively reliable and simple microscopic models exist. The general approach
will combine cluster statistics of percolation theory with critical path analysis. How-
ever, the results, which are given in terms of certain length scales (whose calcula-
tions were described in Chap. 5), can be easily generalized to hydrologic systems.
The purpose of the first section will be to calculate the distribution of electrical
conductivity values for a system of cubic shape and linear dimension x.
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The critical subnetwork, which just percolates, is defined by the association of
all resistors with resistance values less than or equal to Rc. If another subnetwork is
picked by choice of a arbitrary maximum R value such that the maximum R < Rc,
the largest cluster of interconnected resistors cannot reach infinite size. But it can
be large if R is not much less than Rc. Cluster statistics of percolation theory give
the occurrence of such clusters. It is necessary for us only to use these statistics to
calculate how often such clusters with a given governing R value can occur, and thus
how often a finite measurement device or technique will measure the conductivity
from a finite cluster with R different from Rc. But in converting the cluster statistics
to a form useful for these calculations it is necessary to review some basic scaling
arguments and to recall some definitions and values of several length scales.

Take r–E percolation. In Chap. 5, Eq. (5.28) shows that rm, proportional to the
typical hopping distance, is

rm = a

(
α2

c

9π

) 1
d+1

[
1

kBT N(Ef)a3

] 1
d+1 = a

[
T0

T

] 1
d+1

(10.1)

while Eq. (5.25),

Em

kT
= 2rm

a
(10.2)

demonstrates that the range of available hopping energies is proportional to

Em ∝ kT

[
T0

T

] 1
d+1

(10.3)

Note that the numerical factors of these quantities are not reliable, since important
correlations have been excluded from the calculations. In Chap. 5 the bulk separa-
tion of maximally valued resistances for r–E percolation was calculated to be,

l = a

(
T0

T

) 1
d

(10.4)

Below it will be shown how this calculation can be improved in steps. The corre-
lation length evaluated at the optimal resistance for conduction, which will now be
denoted as L, was found to be,

L = a

(
T0

T

) 1+ν
d+1

(10.5)

Consider a cluster of s elements (volume s) at bond probability p. The purpose here
is to relate s to a system length, x, and to relate p to R. Then it will be possible to
find the probability that in a system of length x a continuous path can be found with
no resistance greater than R, which connects both sides of the system.

It is known [9] that the radius of (distance across) such a cluster is rs ∝
sσνh(z), where z = sσ (p − pc). The proportionality constant must include the fac-
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tor a(T0/T )1/4, because both the resistance length and the resistance separation are
equal to this value. Therefore the relationship must have the following form,

rs = a

(
T0

T

) 1
d+1

sσνh(z) (10.6)

The function h(z) is not well-known, so that it will be neglected henceforth. Con-
sider the Euclidean distance between maximally valued resistances on such a cluster
to be l, then distance across such a cluster, ignoring tortuosity, can be written as Nl,
where N is the number of such resistances in a Euclidean length rs. Therefore,

Nl = a

(
T

T0

) 1
4

sσν (10.7)

The total distance across the cluster is thus the product of a grid scale factor and a
percolation function. The following ratio expresses the assumption that the statis-
tical occurrence of critical resistance values on the backbone of the cluster is the
same as in the bulk,

N
1

σν

s
=

(
T0

T

) 1
d+1

(10.8)

since N1/σν = Ndf is proportional to the number of critical bonds on the cluster. In
accord with the discussion in Chap. 5, the factor on the right hand side of Eq. (10.8)
represents ξ3

c /ξ4
c ∝ ξ−1

c , which is the ratio of a 3-D surface area to its enclosed 4-D
volume, where ξc gives the linear dimension of the volume. Simultaneous solution
of Eq. (10.7) and Eq. (10.8) yields,

l = a

(
T0

T

)(1+σν)/(1+d)

(10.9)

While the ratio above seems quite different from that in Eq. (10.4), note that σν =
1/df; replacement of 1/df by 1/d , would lead to the same result as in Eq. (10.4).
One can as a final measure account for the tortuosity of the backbone cluster as well.
Remember that the length, Λ, of the tortuous path along the backbone is described
by a different exponent than that of the correlation length, Λ ∝ (p − pc)

−η , with
η = νDmin. This modification includes substituting (sσν)Dmin for sσν on the right-
hand side of Eq. (10.7)

Nl = a

(
T0

T

) 1
d+1 (

sσν
)Dmin (10.10)

where N is no longer the Euclidean separation between critical resistances, but the
actual number of such resistances along the percolation backbone and l is now their
separation in steps along the backbone. One must then also make a corresponding
change to Eq. (10.8) so as to make the left-hand side the ratio of Ndf/Dmin . The result
that one obtains is,

l = a

(
T0

T

) 1+Dmin/df
1+d

(10.11)
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This result was also found in Hunt [1], though it was expressed as

l = a

(
T0

T

) 1+1/νdf
1+d

(10.12)

as a result of using the exponent η = 1 (from [9]) without taking advantage of the
intervening advances in knowledge of tortuosity (see Sect. 2.1). Numerically the
values of the exponent on (T0/T ) for l do not differ greatly, with Eq. (10.4) yielding
0.33, Eq. (10.9) 0.35 and Eq. (10.11) 0.388, although Eq. (10.12) was used (Hunt,
1998) to produce an exponent of 0.365. All four of these values would scarcely
be distinguishable in experiment. Note, however, that Eq. (10.5) for L yields an
exponent of 0.47, and experiment might distinguish between any of the above values
of l and the choice l = L. Further, the larger the value of the exponent, owing to the
large value of (T0/T ), the larger is the length scale. This makes L > l.

Now turn to the cluster statistics

ns = Ks−τ exp
{−[

sσ
∣
∣(p − pc)

∣
∣
]q}

(10.13)

K is a (dimensionally-dependent) constant, but the value is of no consequence, since
the result will ultimately have to be normalized. Here the absolute value signs are
meant to allow the cluster statistics to be applicable on either side of pc. For the
Gaussian form, q = 2, such a manipulation is not necessary. No solid conclusions
with respect to the value of the exponent p are given in Stauffer [9]. The Fisher
droplet model gave q = 1, but large numerical simulations were very well approx-
imated by q = 2 (for which the result was correct on both sides of the percolation
threshold), even though theory indicated that the Gaussian form could not be cor-
rect (Stauffer). Since the Gaussian form works extremely well, we will use it when
making predictions, but when we wish to generate analytic results we use q = 1
on account of its simpler manipulation. It is understood, however, that those calcu-
lations could probably be modified to yield more accurate results by choice of the
Gaussian form. Later in this chapter we show that it is also possible to approximate
the cluster statistics by a simple power-law with an abrupt cut-off.

Although it is possible that ultimately predictions of distributions of the values of
the conductivity will require a more precise form for the cluster statistics than either
choice mentioned, another aspect of the calculation, which has been left out entirely
is that the cluster statistics of Eq. (10.13) do not really apply far from percolation.
Thus one ought to combine treatments near and far from percolation. The use of
any cross-over in functional form would greatly complicate normalization. Here,
our development is meant mainly to demonstrate concepts and make it possible
to use more simplified cluster statistics; nevertheless the calculations of ensemble
means appear to generate verifiable results.

Equation (10.8) implies that sσν ∝ N , but Eq. (10.10), including tortuosity, gives
sDmin/df ∝ N . Generating two such expressions derives from two different neces-
sities. In Chap. 5 we spent considerable time treating the optimization of the dc
conductivity in an infinite system. In such a case the actual values of the lengths l

and L could play key roles, and in that context we needed a separation of resistances
on the tortuous path. The decisive point is that if one should find by the argument
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of Eq. (10.10) that l > L, one would better use percolation scaling concepts to re-
place l with L. It is probably a contradiction to declare that the correlation length
determines the structure of the dc current carrying cluster and then to allow the sepa-
ration of the critical resistances to exceed that of the nodes. In such a case, the links
are made similar to blobs. However, we found that l < L by virtue of its smaller
exponent on the temperature-dependent factor. Thus our derivation here provides
additional support for our arguments of Chap. 5 that l is not a critical function of
(p − pc). However, in the context of application of cluster statistics, we are more
interested in an expression regarding the Euclidean dimension of a cluster. This in-
terest comes from the necessity to compare the actual size of a cluster with a finite
system; is the cluster large enough to span the system in question? Thus for trans-
formations of the cluster statistics to useful forms we need the kind of procedure
associated with Eq. (10.8).

Now transform s−τ using Eq. (10.7), nsds = nNdN , and the dimensionally de-
pendent scaling relationship (Eq. (1.21)) to N−d+1. Then use sσ =
N1/ν(T0/T )σ/(d+1) (from Eq. (10.8)) and the relationship for p−pc = kBT (ξd+1

c −
ξd+1) ≈ (T /T0)

1/(d+1) (from Eq. (5.31)) to transform the argument of the exponent
in Eq. (10.13) and obtain [1],

nN ∝ 1

Nd+1ld
exp

{

−
[
(
N

1
ν
)
(

T0

T

) σν−ν
(d+1)ν

ln

(
R

Rc

)]2}

= 1

Nd+1ld
exp

{

−
[(

Nl

L

) 1
ν

ln

(
R

Rc

)]2}

(10.14)

The combination of exponents on the ratio of the temperatures, is also generated by
the ratio l/L, if we use the value for l referred to the Euclidean distance, as argued
above. Note that χ is given as proportional to χ0(p − pc)

−ν , making it always
possible to replace Nl/L with Nl/χ0 and some numerical constant which, in the
case of porous media with their largely unknown distributions, is not likely to be
known anyway.

If one expresses R = Rc exp(j), i.e. one quantizes resistance values in steps of
e = 2.718 . . ., the following form for W(N,j) results [1],

W(N,j) = 1

Nd+1ld
exp

{

−
[(

Nl

L

) 1
ν

j

]q}

(10.15)

In the form of Eq. (10.15) contributions to the conductivity may be summed over
the index j . Later representation in the form of an integral over R requires the
transformation dj → dR/R. Using the cluster statistics in a form like Eq. (10.14)
or Eq. (10.15) it is possible to answer a large number of problems.

A cubic volume, x3 > L3, selected at random, will include some clusters of re-
sistors with, e.g., maximal resistance values less than the critical resistance, which
extend from one side of that cube to the other. Such clusters can be defined at all
resistance values. Some cubes will contain additional paths (compared with the ex-
pected value, (x/L)2) with maximal resistors of the critical resistance value. Other
cubes will not contain paths with maximal resistance value R less than or equal to
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Rc at all. Such cubes will have a finite probability of being spanned by clusters with
R > Rc, which are not connected to the critical cluster. The cluster statistics near
critical percolation can be used to describe the statistical occurrence of such clusters
defined by R > Rc as well.

The calculation of the distribution resistance values for a given cube of dimension
x requires summing the statistical occurrence of all cluster sizes, for a given R value,
whose lengths exceed x according to the probability that such clusters ‘fall’ on the
volume x3. The condition

Nml = x (10.16)

states explicitly that Nml is the minimal cluster length which can contribute. The
probability that a given cube has conductivity l/Rx2, where l is the separation of
the resistances with the particular value of R chosen, and x2 is the area normal to
the current, is equal to the probability that a cluster with N > x/l is found at the
volume x3. In the following it will be necessary to assume that x > L, otherwise
the desired statistics for resistance distributions are strongly dependent on the distri-
bution of individual resistances, and thus unrelated to universal cluster statistics. In
fact, one way to recognize the value of L from simulations is that the skewness of a
distribution of system conductivity values, which is a very rapidly falling function
of x for x < L, becomes nearly constant for x > L [3].

The probability that a given volume, x3 will intersect a cluster with linear di-
mension larger than x (providing the current carrying path) is proportional to the
volume, (Nl)3, because it does not matter whether the center of the volume x3 ac-
tually falls on the backbone cluster. It is sufficient that the volume ‘cut’ the cluster.
Thus the probability that a given cubical volume, x3, is characterized by a maximal
resistance, R is proportional to

J =
∫ ∞

x/l

dN

N
exp

{

−
[(

Nl

L

) 1
ν

ln

(
R

Rc

)]q}

(10.17)

The factor dN/N arises from (Nl)3/N4l3, the numerator resulting from the volume
argument above, the denominator from the cluster statistics. In [1] an additional
factor 1 −K was included to represent the probability that there was no cluster with
a smaller R value, which also spanned the volume, but this factor was later argued
to be negligible.

Integral (10.17) could be performed relatively easily only in the case that q = 1.
Since the purposes here are still largely illustrative, this case will be used. Then
integral (10.17) yields,

J = −Ei

{

−
[(

Nl

L

) 1
ν

ln

(
Rc

R

)]}

(10.18)

where Ei(x) is the exponential integral of x. Equation (10.18) is in a form, which
is not particularly illustrative. But for relatively large values of its argument,
−Ei(x) → exp(−x)/x and [1],
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J = (L/x)1/ν
(

R
Rc

)( x
L

)
1
ν

ln
(

Rc
R

) , R < Rc (10.19a)

J = (L/x)1/ν
(

Rc
R

)( x
L

)
1
ν

ln
(

R
Rc

) , R > Rc (10.19b)

J (R) represents an unnormalized distribution of resistance values, but it is possi-
ble to find the variance from Eqs. (10.19a), (10.19b) to be R2

c (L/x)2 (under the
condition that x > 3L, and approximating 1/ν as 1).

Using the unnormalized distribution (Eqs. (10.19a), (10.19b)) it is possible to
calculate approximately the mean value of the conductivity of cubes of dimension
x. Such a calculation applies to any conduction process, thermal, electric, or hy-
draulic. The conductivity of a cube of dimension x with a dominant conducting
path of length Nl and resistance NR is

σ = Nl

NR

1

x2
(10.20)

The mean conductivity of an ensemble of such cubes is an integral over all cubes
according to the frequency of their occurrence. The integral over R was split into
two parts, R ≤ Rc/e and R ≥ eRc because of the difference in form of the cluster
statistics across R = Rc; the case R = Rc was treated separately. The contribution
from R �= Rc was shown to yield a contribution to the dc conductivity, �σdc,

〈
�σdc(x)

〉 ∝ σdc(∞)

[
L

x

]2[

1 +
(

L

x

) 1
ν
]

(10.21)

upon ignoring two numerical constants of order unity. The contribution from R = Rc
was argued to be of the same form as the first term. The mean conductivity thus
diminishes asymptotically with increasing size to its value in the thermodynamic
limit, σdc(∞). The result from Eq. (10.21) is identical to a result for the electrical
conductivity of a thin film of thickness x, which can easily be shown to be equivalent
to the ensemble mean of the conductivity of a collection of such cubes. The results
of Eq. (10.21) were found to be in accord with numerical simulations in [3] for the
hydraulic conductivity, though there was some question as to whether both terms
were observed.

It was found in [3] that assuming R = R0 exp ξ , as above together with the Gaus-
sian form for the cluster statistics, which is more accurate than assuming q = 1 leads
to the result that the distribution of conductivity values is approximately log-normal,
at least in the case where L ≈ x. Clearly, replacing ln(R/Rc) by (R − Rc) for the
case R = R0ξ

k (k = 4 for Poiseuile flow) will make the result more nearly com-
patible with Gaussian statistics than with a log-normal distribution. At the time of
the original publication on conductivity distributions the coincidence that the log-
normal distribution appeared to be consistent with Nielsen’s results [7] for the dis-
tribution of the steady-state unsaturated hydraulic conductivity values in field soils
was considered to be significant, especially since the assumed exponential depen-
dence of R on a random variable ξ was consistent with Nielsen’s observation that
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K was exponentially dependent on the moisture content. In the meantime we recog-
nize that the exponential dependence on a moisture content is not an obvious result,
and this question is rather involved. But this topic is discussed further in Chap. 12
in which heterogeneity on more than one scale is treated.

10.2 Cluster Statistics Treatment of Non-equidimensional
Volumes and Anisotropy

Most of the material from this section comes from [4] or [5].
An easier means to treat the cluster statistics can be developed, and this treatment

is independent of the exact form of the function f (z). Instead of using a particular
form for the exponential cut-off, replace f (z) by a sharp cut-off at sσ ∝ (p−pc)

−1.
While such an approximation may seem quite rough, it should capture the scaling
behavior properly when resulting distributions are normalized, and it should also
lead to accurate results for ensemble means. Treating the exponential cut-off as a
sharp cut-off,

nN = 1

N4l3
N <

L

l
lnν

(
gc

g

)

(10.22)

for the case g < gc and

nN = 1

N4l3
N <

L

l
lnν

(
g

gc

)

(10.23)

for the case g > gc. Both Eq. (10.22) and Eq. (10.23) were written here for the case
R = R0 exp(ξ) again. One can also write the cluster statistics for the case R = R0ξ

k ,
with the results,

nN = 1

N4l3
N <

L

l
|V − Vc|−ν (10.24)

Linearize V − Vc for the Rieu and Sposito model (done in Eq. (5.42)) to get

|V − Vc| = 3 − D

3

(
gc

gm

) 3−D
3 |g − gc|

gc
(10.25)

using the additional substitution of (gc/gm)(3−D)/3 for (rc/rm)3−D . Note that in
Chap. 6 the same problem was considered, but with the assumption that the criti-
cal volume fraction Vc ≈ 0. Under such circumstances, gc ≈ gm, and Eq. (10.24)
simplifies to,

N <
L

l
|V − Vc|−ν = L

l

[
gc

|g − gc|(1 − D/3)

]ν

(10.26)

It will turn out (in Chap. 11, for example) that a procedure not based on linearization
produces much better results. To some degree we continued the linearization here as
a tradition, to some degree we were perhaps influenced by the theoretical arguments
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Fig. 10.1 Demonstration that
a cluster (filled) of g < gc
(not connected to the infinite
cluster) of linear dimension
equal to the shortest
dimension can force a current
to flow through a region of
lower conductance, while a
cluster (unfilled) with g > gc
must be as long as the largest
dimension of the system

that percolation functions and exponents describe behavior precisely only in the
asymptotic limit. Nevertheless, such a narrow perspective is much too limiting, and,
we can, as usual, apply our results over a much wider range of conditions than
merely the asymptotic limits of percolation theory. Accordingly we present here
also an analogous result to Eq. (10.26) that is not based on linearization.

N <
L

l

∣
∣
∣
∣

1

1 − (
g
gc

)1−D/3

∣
∣
∣
∣

ν

(10.27)

Equation (10.27) performs better apparently because, under typical conditions in
porous media with D on the order of 2.8 or larger, the very small power 1 − D/3 =
0.067 or smaller, makes much wider ranges of g fit close to the percolation thresh-
old.

Consider a system with horizontal dimension x and vertical dimension ε1/2x.
The factor, ε1/2, can be regarded as arising from a coordinate transformation corre-
sponding to the transformation from an equidimensional volume in an anisotropic
medium to a non-equidimensional volume in an isotropic medium (the discussion of
the correspondence of ε1/2 to values of K in the anisotropic case will be discussed
after the derivation). Systems with characteristic g < gc can result from clusters of
size x or larger, which serve to block the entire volume, but systems with charac-
teristic g > gc require clusters of linear dimension ε1/2x or larger (see Fig. 10.1).
Using these results one can now follow an analogous procedure to Eq. (10.20) to
find W(g) by integrating the product of (Nl)3 and an integrand of the form of the
right-hand side of Eq. (10.25). The result is the integral,

W(g) ∝
∫

dN

N
(10.28)
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The question is, what are the limits of such an integral? For either case, g > gc
or g < gc the upper limit is given by Eq. (10.27). For g < gc, the lower limit is
(x + l)/ l, while for g > gc, the lower limit is (xε1/2 + l)/ l. The reason for adding
the term l in both cases is to be consistent with the derivation in Chap. 9 which noted
that in the limit of small system size x the discretization of the system through the
dimensions of the individual resistors could not be neglected. We cannot have cluster
sizes smaller than an individual bond length. The results of these integrations are the
(unnormalized) expressions for W(g) below,

W(g) ∝ ln

[(
L

l + xε1/2

) 1
ν 1
( g

gc

)1−D/3 − 1

]

g > gc (10.29)

and

W(g) ∝ ln

[(
L

l + x

) 1
ν 1
( gc

g

)1−D/3 − 1

]

g < gc (10.30)

It is possible to use linearized versions of Eq. (10.29) and Eq. (10.30) to calculate a
mean value of the distribution as well as a distribution width in terms of the funda-
mental formula in terms of the difference of the mean value squared and the square
of the mean value. Let

A =
(

L

l + ε1/2x

) 1
ν 1

1 − D/3
(10.31)

and

A′ =
(

L

x + l

) 1
ν 1

1 − D/3
(10.32)

Then it is possible using the linearized versions of Eq. (10.29) and Eq. (10.30) to
express an ensemble mean 〈g〉 as,

〈g〉 = lim(δ → 0)

∫ gc+Agc
gc+δ

gdg ln
[ Agc

g−gc

] + ∫ gc−δ

gc−A′gc
gdg ln

[ A′gc
gc−g

]

∫ gc+Agc
gc+δ

dg ln
[ Agc

g−gc

] + ∫ gc−δ

gc−A′gc
dg ln

[ A′gc
gc−g

] (10.33)

The upper (lower) limit of the first (second) integral is determined by the condition
that the upper limit of integral (10.28) be larger than the lower limit. The results were
obtained without accounting for any special contribution from g = gc. Evaluation
of the integrals leads to,

〈g〉 = gc
A + A′ + (1/4)A2 − (1/4)A′2

A + A′ = gc

[

1 +
(

L

ε1/2x+l

) 1
ν − (

L
x+l

) 1
ν

4(1 − D/3)

]

(10.34)

For large values of x it is possible to rewrite this expression as,

〈gv〉 =
[

1 +
(

L

ε1/2x + l

) 1
ν −

(
L

x + l

) 1
ν
] 3/4

3−D

(10.35)
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where the subscript v has been added to denote vertical flow. The logic of this
particular recombination is that it is, in a sense, an inverse of the expansion of
g1−D/3 − g

1−D/3
c ; thus it is plausible that a more detailed treatment that did not

utilize the linearization in the first place would lead to precisely the same result as
Eq. (10.35). Of course this recombination is not unique, but this is a particular case
where the recombination is a direct reversal of the linearization of Eq. (5.42). In
any case, Eq. (10.34) and Eq. (10.35) are equivalent to lowest order. Further, the
results from Eq. (10.35) will be seen to be very nearly identical to the results from
Chap. 9 over a wide range of system sizes x. The only purpose is to compare with
the calculations of Chap. 9, for which such a linearization was not necessary. Now
Eq. (10.35) can be rewritten in the form,

〈gv〉 = gc

{

1 −
[

1 −
(

1 + x/L

1 + ε1/2x/L

)] 1
ν
[

1

1 + x/L

] 1
ν
} 3/4

3−D

(10.36)

which clarifies the scaling of 〈gv〉 with length x as a ratio of x/L.
A similar calculation can be made for an ensemble mean bottleneck conductance

for horizontal flow through the system. In this case, however, a cluster of size x

is large enough to facilitate flow with a larger g than gc, but it takes a cluster of
size ε1/2x with maximum g < gc to block flow. The result is easily deduced from
Eq. (10.33) to be,

〈gh〉 = gc
A + A′ + (1/4)A′2 − (1/4)A2

A + A′ = gc

[

1 +
(

L
x+l

) 1
ν − (

L

ε1/2x+l

) 1
ν

4(1 − D/3)

]

(10.37)

where now the subscript h denotes horizontal flow. Equation (10.37) can then also
be rewritten in the following form (by the same reversal of linearization as in
Eq. (10.34))

〈gh〉 = gc

{

1 +
[

1 −
(

1 + x/L

1 + ε1/2x/L

)] 1
ν
[

1

1 + x/L

] 1
ν
} 3/4

3−D

(10.38)

Note that 〈gh〉/〈gv〉 is 1 in both the limits of x → ∞ and x → 0. In the limit of an
infinite system a critical path may be found equally easily in either the horizontal or
the vertical direction and 〈gh〉/〈gv〉 should be 1. However the fact that the ratio of gh
(and gv) in the limit x → ∞ to its value in the limit x → 0 is also 1 is an artifact of
the assumption that Vc ≈ 0. In the limit x → 0 the present calculation is consistent
with the fact that an ensemble mean of systems so small that they are composed of a
single element must give the arithmetic mean in either the horizontal or the vertical
direction, but the effective hydraulic conductivity of an infinite system is only the
arithmetic mean if Vc can be argued or chosen to be zero.

Now how do we actually relate ε to the horizontal and vertical measurements
of K? ε is assumed to give a ratio of the characteristic values of horizontal and ver-
tical K measurements. If Vc = 0, then it must often be possible to find horizontal
paths that connect a system from one side to the other that never have to use any
smaller pore (or fracture) radii than rm. So Kh ∝ r2

m (by the results for the saturated
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Fig. 10.2 Comparison of the result of Eq. (10.36) for Kv obtained by cluster statistics of perco-
lation with experimental data obtained by Schulze-Makuch [8]. The same values of the parame-
ters, D = 2.98, and rm/r0 = ε1/2 = 2500 were used as in Eq. (9.8) from Chap. 9. Here we show
Kh > Kv from Eq. (10.38) for comparison

hydraulic conductivity, Chap. 5). On the other hand, vertical paths in a system small
enough to be one dimensional must sample every r value. Thus, effectively, a verti-
cal path has Vc = 1 and Kv = r2

0 . This means that ε1/2 ∝ (rm/r0), which is identical
to the ratio, R, in Chap. 9. As a consequence, since Kv was shown in Chap. 9 to
sweep out the values from r2

0 through r2
m, the result for Kh cannot involve a very

large enhancement, being at most related to the density of flow path inputs rather
than maximally valued resistances to flow. And indeed the maximum enhancement
is only about an order of magnitude rather than the 6 orders of magnitude reduction
in Kv at the same x value.

After this discussion it is now appropriate to consider how well our results fare in
comparison with experiment. We choose the same anisotropic fracture system in a
carbonate aquifer [8] as was chosen in Chap. 9. In Fig. 10.2 the result (Eq. (10.36))
for Kv(x) is compared with experiment and found to reproduce experiment approx-
imately equally well as the results from Chap. 9 (and using the same parameters)
over a wide range of system sizes. This equivalence was also intended, once again,
to demonstrate the redundancy of percolation theory, which allows more than one
starting point to calculate the same quantity. Additionally we show the results of
Eq. (10.38) for Kh(x). Note that, while Kv is an increasing function of x, Kv is a
decreasing function. In these representations L was set equal to 1, making the units
of the horizontal scale arbitrary.

In Fig. 10.3 we show a 3-d plot of the results of Eq. (10.29) and Eq. (10.30) for
the pdf for measuring conductance value g as function of size, x.

We have [5] developed a scheme to generate a width of a distribution of con-
ductance values that is highly asymmetric, as in Eq. (10.29) and Eq. (10.30). This



10.2 Cluster Statistics Treatment of Non-equidimensional Volumes 325

Fig. 10.3 Family of curves describing the distribution of conductance values, W(g,x) as given by
the approximation in Eq. (10.29) and Eq. (10.30)

scheme can be described most easily in geometric terms. Emplace a horizontal line
of variable height on the graph of W(g). This line will normally intersect W(g) in
two points. Choose the height so that the area under W(g) between the two intersec-
tion points is 68 % of the total area under W(g), equal to the fractional area within
one standard deviation of the mean of a Gaussian distribution. The range of g values
between these two intersection points can then serve as a measure of the distribution
width. When we calculate this distribution width again for the same parameters as
found in Chap. 9, the results can be represented graphically in Fig. 10.4. While the
comparisons in Chap. 9 were essentially fits, since the parameters were chosen to
fit the data, use of the same parameters here gives Fig. 10.4 at least some of the
characteristics of a prediction. Figure 10.5 demonstrates that the distribution width
predicted is in accord with field data when specific media are considered individu-
ally.

It should be mentioned that the results of this chapter have a potential relevance
also to a radioactive waste problem at the Hanford site. Technetium in solution was
discharged at the BC Crib site and was expected to drain straight down to the water
table. The evidence is that it did not, having encountered a horizontal layer with a
large anisotropy in K and spread laterally instead. With increasing time, however,
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Fig. 10.4 Comparison of the width of the distribution of W(g) values as a function of x with
experimental data from Schulze-Makuch [8]. The geometric procedure to calculate the width of
the distribution from the approximation given in Eq. (10.29) and Eq. (10.30) is given in the text.
The parameters, D = 2.98, and rm/r0 = ε1/2 = 2500 used were again the same values as those
chosen in Chap. 9, though in Chap. 9 only the expected value of the conductivity was treated

the effective experimental scale will increase, producing an increase in the expected
value of Kv and a decrease in the expected value of Kh. Using the application of the
cluster statistics that led to Eq. (10.36) and Eq. (10.38) it should be possible to make
a prediction of the length, and thus the time scale, before the probabilities of vertical
and horizontal advection are similar and thus evaluate the potential danger of con-
tamination of the water supply in a quantitative way. This question is now addressed
in Chap. 12 as it is effectively a problem of multiple scales of heterogeneity.

10.3 Semi-variograms and Cross-Covariance

The semi-variogram for the hydraulic conductivity is defined as,

ΓK(h) = 1

2N(h)

N(h)∑

j=1

[
K(xj ) − K(xj + h)

]2 (10.39)
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K(xj ) is the value of the hydraulic conductivity at x = xj , K(xj + h) is its value
a distance h from xj , and N(h) is the number of pairs of points at which mea-
surements are made a distance h apart. For stationary random functions, the semi-
variogram is related to the covariance, CK(h), by ΓK(h) = CK(0) − CK(h). In
practice the semi-variogram (often simply called the variogram) is the product of
the variance of K and the difference between 1 and the correlation function of K .
The range of the variogram is defined in terms of the length scale which governs the
decay of the correlation function.

There are many possible reasons why a random field, such as the hydraulic con-
ductivity, can be correlated from point to point in a geologic porous medium. These
include depositional correlations, fractures, folding, etc. There are also reasons that
relate to the random combination of highly conducting elements into a larger re-
gion of high conductivity. In particular, given the context of this chapter, suppose
that a large cluster of resistances of maximum value R < Rc is present in a system
of size x. Then a measurement of K in a region of space that covers one part of
the cluster will be correlated with a measurement that is made over another part of
the cluster. Otherwise, there is no discernible correlation. We can define that prob-
ability in terms of conditional probabilities as follows. Start from Eq. (10.18) and
write [2],

J =
∫ ∞

x/l

KdN (10.40)

where K is the integrand of Eq. (10.18). Equation (10.40) once again gives a (rel-
ative) probability that a system of size x has controlling resistance R. The prob-
ability that the same cluster determines the resistance after translation a distance
h is the (conditional) probability that the cluster that is known to be of mini-
mum size x is actually of size at least x + h. This probability is easy to write
as [2],

P(h) =
∫ ∞
(x+h)/l

KdN
∫ ∞
x/l

KdN
(10.41)

The variogram, since it measures the lack of correlation, is proportional to the com-
plementary probability, 1 − P(h). Using Eq. (10.20ab) the quantity 1 − P(h) can
be expressed as [2],

1 − P(h) = 1 −
(

x

x + h

)

exp

[

−
(

x

l

)∣
∣
∣
∣ ln

(
R

Rc

)∣
∣
∣
∣

]

(10.42)

Note that Eq. (10.42) is approximate in three respects; one, the cluster statis-
tics of percolation theory are not accurately described by the exponential “Fisher
droplet” form used, and two, the approximation for the exponential integral used
is an asymptotic limit, and three, cluster statistics far from percolation should be
used for R values far from Rc. Again, the main purpose here is instructive. Now
the variogram must be obtained by an integral of Eq. (10.42) over the probabil-
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ity density for the cluster resistance, R, since clusters of all resistances can occur.
Thus [2],

ΓK(h) ∝ 1 −
∫ ∞

0

x

x + h
exp

[

−
(

x

l

)∣
∣
∣
∣ ln

(
R

Rc

)∣
∣
∣
∣

]

W(R,x)dR (10.43)

where

W(R,x) =
(

L
x

)(
R
Rc

) x
L /| ln(R/Rc)|

∫ ∞
0 dR

(
L
x

)(
R
Rc

) x
L /| ln(R/Rc)|

(10.44)

The first term in Eq. (10.43) integrates easily to 1, while the second integrates to
[x/(x + h)]2. Thus,

ΓK(h) ∝ 1 −
(

x

x + h

)2

(10.45)

Using the representation of the variogram as the product of a spatial dependence
and the variance of R yields thus [2],

ΓK(h) = R2
c

(
L

x

)2[

1 −
(

x

x + h

)]2

(10.46)

It is easily determined [3] that Eq. (10.46) for the variogram cannot be precisely
correct because its Fourier transform can take on negative values, as can thus the
Fourier transform of the correlation function, or the characteristic function. The
wiggles in the Fourier transform arise from the lack of continuity of the slope of
ΓK(h) in the limit h → 0. Owing to the various approximations, including us-
ing an asymptotic expansion for large h in the limit of h → 0, the defect of the
derived function in this limit is not really unexpected. Nevertheless Eq. (10.45)
clearly shows that the range of the variogram is proportional to x, the linear di-
mension of the measurement. In strongly heterogeneous media, “a quantitative
measure of the range of correlation of a random spatial structure may be calcu-
lated from the autocorrelation function. In general the integral scale [this range]
is not an intrinsic property of the field, but depends on the scale over which it
is measured.” In other words, the range is a function only of x. Moreover, Neu-
man and di Federico [6] present experimental results that demonstrate that the
range of the variogram for the hydraulic conductivity is linearly proportional to
the measurement length scale over many orders of magnitude of x. So, even in the
present approximation, this aspect of experiment is achieved. Further, it was shown
in Hunt [2] that Eq. (10.45) resembles the spherical approximation for the vari-
ogram.

The cross-covariance is given in terms of the probability that a second volume x

at a distance h from a first volume has R ≥ R2 if volume 1 has R ≥ R1. To write
down an expression in terms of cluster statistics, one must make some assumptions
regarding the magnitudes of R1 and R2. In Hunt [2] it is shown that the cross-
covariance is given by,
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(10.47)

in the case that R1 > R2 > Rc. The first term gives, as in the calculation of the
variogram above, the probability that the second volume is located on the same
cluster of linear dimension x+h. In that case R > R1 in the second volume certainly
guarantees R > R2. But it is also possible that the second volume is not located on
the same cluster (the second factor of the second term); then, however, it may still
be located on a cluster of size between x and x + h with controlling resistance
somewhere between R2 and R1. The cluster must be at least size x in order to
control the measurement of volume 2, but cannot be as large as x + h, or it will
control the measurement of volume 1 as well. If it controlled the measurement of
volume 1 as well, then volume 1 would have R < R1. Since the choice of volume 1
and volume 2 is arbitrary, this expression can always serve for cases when both R1
and R2 are greater than Rc. The other two cases may be written down analogously
(when both resistances are smaller than the critical resistance and when one is larger
and one is smaller).

Note that in Hunt [2] the expression corresponding to Eq. (10.47) has several
typos, but more importantly the limits on the interior integrals of the first factor of
the second term are incorrect.

Problems

10.1 Write analogous expressions for the cross-covariance when both controlling
resistance values are smaller than Rc and for the case when they are on oppo-
site sides of Rc.

10.2 Use the cluster statistics of percolation theory to predict the variance of the
distribution of Kh and Kv as functions of system size. There are two ways to
do this calculation. One is to use the full cluster statistics distribution (with
its attendant unknowns). The second way, recommended here, is to use the
approximation in the text.
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Chapter 11
Properties Based on Tortuosity

This chapter was originally devoted to the subject of solute dispersion and indeed
dispersion still makes up the greater part of the chapter. We have expanded our
treatment of dispersion to address a wider range of experimental conditions, includ-
ing the previously ignored unsaturated case, as well as a wider range of medium
models. We have also added comparisons with over 2000 experimental results. We
demonstrate that our predicted dependence of typical arrival times on system length
explains some long-unexplained results out of dispersive transport in transient pho-
toconductivity. The non-linear dependence of arrival time on distance generates a
length dependence of the typical solute velocity (Sect. 11.5), which has implica-
tions for the spatio-temporal scaling of reaction rates in porous media as well.

But we have also expanded the chapter to include tortuosity itself. As has been
known for decades, the tortuosity of flow or charge transport paths is an impor-
tant input into calculations of such properties as the permeability and the electrical
conductivity. In our presentation of flow and conduction properties (earlier chap-
ters) we did not isolate the effects of tortuosity vis-à-vis connectivity, but instead
referred simply to their combined effects as contained in the scaling exponent of
the conductivity. But others have not followed this path. Much of the existing work
on the relevance of tortuosity to flow derives from a perspective considering flow
as chiefly a hydrodynamic problem, with streamlines perturbatively influenced by
solid obstacles, frequently spherical. Such investigations typically apply the Navier-
Stokes equations or lattice Boltzmann techniques to relatively high porosity mod-
els (70–98 %). However, with better computing powers becoming available, lower
porosity materials are being included, and it is becoming obvious that percolation
theory has a role. Similarly, soil physicists, petroleum engineers, and hydrogeolo-
gists each have had their own reasons for defining “tortuosity” factors. Some of the
definitions can be seen to be nothing more than quantities describing a deviation
between theory and experiment, which are then interpreted as evidence of tortuous
paths rather than as revealing weakness in the theory. Others are more physically
motivated. In any case, we acknowledge the importance of including some discus-
sion of this literature. In the process we will show that many of the results from sim-
ulations conform very closely to percolation theoretical predictions [54], provided
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that the limit 1 −φ 
 1 is not investigated too closely. While this limit of vanishing
solid volume fraction is of theoretical interest, it has little utility in studies of natural
grain supported media.

11.1 Tortuosity

The purpose of this section is, by invoking concepts from percolation theory, to
unify the conceptual understanding of tortuosity. Our review on tortuosity [53] sum-
marizes the current (difficult) state of affairs. While the concept of tortuosity seems
straightforward, in practice tortuosity is not consistently defined, and its treatment in
the porous media literature is often misleading [44, 108, 140, 168]. Sometimes tor-
tuosity has been defined as a geometrical parameter, other times as a property related
to a specific form of transport: hydraulic, electrical, or diffusive [32, 104, 140, 149].
A fundamental question, rarely addressed, is whether tortuosity is an intrinsic prop-
erty of the medium, of a process within the medium, or neither, being simply an
ad-hoc parameter used to improve the agreement between theory and experiment.
It is typically claimed that tortuosity depends on the type of flow or transport pro-
cess being studied, and comparisons between predicted and measured fluid flow and
transport are used to support that assertion [108, 172]. But such a claim for the nature
of tortuosity suggests that its use in practice is often as an adjustable parameter—a
“fudge factor”—implying that a clear understanding of tortuosity is lacking. When
one considers that the influences of tortuous paths are often invoked to explain dis-
crepancies between experiments and calculations based on the bundle of capillary
tubes model [149], the wide range of possible interpretations of tortuosity becomes
clear.

It is obvious that flow paths through porous media are not straight, in contrast to
the conceptualization of, e.g., electrical current paths in metals. It is also true that
many formulations for the electrical or hydraulic conductivity in porous media do
not predict experimental results accurately, at any length scale. However, this does
not mean, as often assumed, that tortuosity is the only reason for the discrepancy,
nor that predictions can be corrected by the simple expedient of incorporating a
“tortuosity” factor (originally introduced by Carman [28]). The problem runs far
deeper, as noted in Chaps. 3, 5 and 6. Bundles of capillary tube models generate
constitutive relations based on arithmetic averaging of local conductances, relegat-
ing the role of the heterogeneity to a description of the distribution of tube radii
(Sect. 3.5.5). But “standard” methods [27, 112, 169] that calculate hydraulic con-
ductivity, being conceptually based on the capillary bundle, thereby use techniques
designed for homogeneous media. Effective hydraulic conductivity values cannot be
derived from a geometric or harmonic mean either, nor by a simple generalization
such as power-law averaging. Kozeny-Carman [89] formulations of the saturated
hydraulic conductivity, for example, have been verified to perform worst of four
tested methods when local variability in pore radii is high [17]. The discrepancies
are orders of magnitude higher than those given by the critical path formulation
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of Katz and Thompson [82]. The use of tortuosity in standard models as a fudge
factor to explain the discrepancy between theory and experimental values is quite
misleading, as it masks more fundamental issues.

Given this context it may seem unproductive to address studies on “electrical,”
“hydraulic,” or “diffusive” tortuosity. Yet, in the realm of relatively small hetero-
geneity where simulations or experiments can address the tortuosity accurately,
the results seem reasonably compatible with our predictions of geometric tortuos-
ity [53]. In fact, we argue that these four definitions of tortuosity should coincide in
the limit of vanishing pore size variability. The details of this argument, based on
the trivial topology of a Wheatstone Bridge [54], are outside the scope of the present
work. However, we note that the tendency for the various definitions of tortuosity to
coincide in the limit of zero pore size variability is in line with our conclusion that
universal scaling of the conductivity applies to the hydraulic conductivity as well as
the electrical conductivity in such a limit.

11.1.1 Tortuosity Theory

Our discussion of geometrical tortuosity requires two inputs from percolation the-
ory: expressions for the correlation length and the chemical path length. Then we
will need the definition of fractal path lengths from Mandelbrot [102].

Percolation theory predicts that in an infinite system, the mean distance between
any two sites on the same finite cluster, usually referred to as the correlation length
χ , is given by [26, 141, 162]

χ = C|p − pc|−ν (11.1)

In bond percolation C is proportional to a typical bond length. In Monte Carlo
simulations of percolation in the square lattice, Kapitulnik et al. [81] found that
C = 0.85 ± 0.4 in units of the bond length. The correlation length is thought to
scale with p − pc in the same way (with the same exponent) as does the Euclidean
distance across the largest finite cluster of the connected bonds (sites).

For a fractal path constructed of steps of length ε, the total length of the path
L(ε) would be [102, 173]

L(ε) = xDx
s ε1−Dx (11.2)

in which Dx is the relevant fractal dimensionality, xs is the system size, and the
subscript “x” stands for either “b”, denoting the backbone spanning the network,
or “opt”, denoting the optimal path. L(ε) in Eq. (11.2) diverges in the limit ε → 0
for Dx > 1, which is always the case in percolation theory. The backbone is the
multiply-connected part of the sample-spanning cluster through which fluid flow
occurs, while the optimal path is the most “energetically” favorable path across the
system. Lee et al. [93] found that, whereas the fractal dimensionality of the optimal
path, Dopt, describes the scaling of the most probable traveling length, Db describes
the scaling of the most probable traveling time. So the models developed below
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(Eqs. (11.4) and (11.6)) can describe either a space-based or time-based tortuosity,
depending on whether Dx in Eq. (11.2) is replaced by Dopt or Db. The time-based
tortuosity will be used in modeling dispersion in flow through porous media, and the
arrival times distribution in porous media [52, 73, 75, 76] as shown in Sect. 11.2.
The length-based tortuosity is the focus here in Sect. 11.1.

The optimal path fractal dimension Dopt is 1.21 in 2D networks, and 1.43 in 3D
[31, 129, 160]. The average tortuosity fractal dimension DT = 1.10 reported by Yu
and Cheng [177] for 2D simulations is not greatly different from the 2D value of
the optimal path dimension (Dopt ≈ 1.21). Note that any lack of resolution at small
scales, or limitation in the size of the imaged region, would tend to reduce the value
of the extracted fractal dimension (DT = 1.10). Other, more detailed comparisons
will be given later.

As the percolation threshold is approached for a given network, the correlation
length χ diverges, while the individual step (bond) lengths remain constant. If, in
accord with the Mandelbrot definition, we suppose that the step lengths approach
zero and the largest cluster (or the system size) remains constant, we should choose
the individual steps inversely proportional to the correlation length (ε ∝ χ−1). In
that case, Eq. (11.2) can be rewritten as

L(χ) ∝ xDx
s χDx−1 = xDx

s

[|p − pc|−ν
]Dx−1 (11.3)

Because χ is the mean distance between any two sites on the same finite cluster,
L(χ) is the average length of the geometrical path 〈Lg〉. Thus, following Eq. (11.1),
the geometrical tortuosity τg is

τg(p) ∝ |p − pc|ν(1−Dx) (11.4)

Equation (11.4) is valid for (1) the case of finite values of the fundamental length
scale (i.e. a separation between connected pores), and (2) infinite systems. This re-
quires us to incorporate finite-size scaling into our expression, if we are to compare
tortuosity predictions with numerical simulations, which are frequently conducted
for systems that are only a few pore separations in length.

Practical application of Eq. (11.4) requires choice of a suitable system parameter
in the place of the percolation probability p. For saturation-dependent problems the
best choice is the moisture content θ (or, equivalently, the saturation S). In some
cases, the porosity may be used. Either way, continuum percolation is the appro-
priate framework for further development. The question of whether the structure of
the resulting continuum percolation representation is more nearly aligned with site
or bond percolation, or invasion or random percolation, may determine the choice
of the appropriate value of Db in dispersion, but Dopt, relevant for the tortuosity,
appears to be less sensitive to this distinction [160]. It is an open question, how-
ever, to what degree correlations in the medium may affect the values of Db and
Dopt manifest in a given medium. Presumably not all possible media will conform
to one of the simple models considered here! However, so far the systems we have
investigated do so.
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Finite-Size Scaling

The basis of this discussion is the same as in Chap. 9, where we constrained the
critical path correlation length to be smaller than the system size by forcing p > pc,
and thereby generating a value of the controlling conductance that was smaller than
the critical one.

At length scales larger than the correlation length (xs > χ ) the system is macro-
scopically homogeneous [140] and the geometry is Euclidean, whereas at smaller
length scales (xs < χ ) the system is heterogeneous, fractal and statistically self-
similar [140]. What this means for finite-sized systems, however, is that it is impos-
sible to distinguish approaches to the percolation threshold closer than the value of
p for which xs = χ . Thus, one can set the system size equal to the correlation length
(xs = χ ) to find a particular value of the bond probability, denoted p′, which has the
following property. All values of p such that pc < p < p′ generate a correlation
length larger than the system size, and cannot be distinguished from pc in a volume
as small as the system under consideration. This eliminates system sensitivity to
small changes of p in the vicinity of the percolation threshold [45], but very strong
dependences on system size emerge for such parameters as diffusion or transport co-
efficients. Fisher [46] developed finite-size scaling theory, which allows these length
dependences to be related to singular behavior of the same property as a function
of p − pc. In particular, a property whose dependence on (p − pc) is of power-law
type with power n depends on the system length according to a power law, with the
value of the exponent being −n/ν. Thus the tortuosity at the percolation threshold
must scale with system size as

τg(xx) ≈ (C/xs)
1−Dx (11.5)

The theory of finite-size scaling is complicated enough that the precise result for the
general function of both system size and the percolation variables is never specified.
Yet it is simple enough to devise an expression for the tortuosity that is compatible
with both (a) finite-size scaling and (b) the knowledge that in a finite-size system it
is impossible to distinguish between a system which is at the percolation threshold,
and one which is merely so close that the correlation length is larger than the system
size. In the case of geometrical tortuosity we propose the following functional form:

τg(p) ∝
∣
∣
∣
∣p − pc +

(
C

xs

)1/ν∣∣
∣
∣

ν(1−Dx)

(11.6)

Notice that in the limit of large system size (C 
 xs) the above equation converges
to Eq. (11.4) for the tortuosity, but for the case p = pc one retrieves the finite-size
scaling result (Eq. (11.5)) for the power-law dependence of the tortuosity on system
size.

Continuum Percolation

Wetting or drying processes require pore bodies (sites) or throats (bonds) to be filled
by or emptied of water, respectively. Sahimi [142] argued that wetting (e.g., infil-
tration and imbibition) is a site percolation process, while drying (e.g., drainage)
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is a bond percolation process. Hunt [67] argued that, particularly for saturation-
dependent problems, it is useful to use a continuum percolation representation with
the moisture content playing the role of the percolation variable. To apply Eq. (11.6)
to the continuum percolation representation, we replace the variables p and pc re-
spectively by the water content θ and its critical value for percolation θt in the porous
medium [67]. This gives

τg(θ) ∝
∣
∣
∣
∣θ − θt +

(
C

xs

)1/ν∣∣
∣
∣

ν(1−Dx)

(11.7)

We would like to normalize Eq. (11.7) for the tortuosity so that it yields the value
of 1 at full saturation, in the limit that the porosity approaches 1. Such a proce-
dure carries the risk associated with extending the simple scaling formulation from
percolation to conditions far from the percolation threshold; however, only under
such conditions can one make a reasonable comparison with simulations or experi-
ment. But there is an additional problem; when finite-size scaling concepts are used,
this leads to a normalization that is size-dependent in principle. We generally want
to avoid using a size-dependent normalization, because such a finite-size scaling
correction can be readily compromised. But we also recognize that avoiding such
complications can lead to a discrepancy of several percent in the limit that porosity
approaches one. Accepting these risks, Eq. (11.7) can be rewritten

τg(θ) =
∣
∣
∣
∣
θ − θt + (C/xs)

1/ν

1 − θt

∣
∣
∣
∣

ν(1−Dx)

(11.8)

Note that Eq. (11.8), in the case of full saturation and θt = 0.1φ, yields a tortuos-
ity equal to φν(1−Dopt). Using the 3D values, ν ≈ 0.88 and Dopt ≈ 1.43, generates
0.54 < τ−1

g < 0.82 for 0.2 < φ < 0.6, a typical range of tortuosity values, at least
in unconsolidated media. This range of values is similar to Bear’s [13] stated range
0.56 < τ−1 < 0.8 for saturated media.

In the above expression for the tortuosity, we did not use the finite-size correction
in the normalization factor (in the denominator). But when we express the relative
tortuosity (compared with its value at full saturation) we should include it, finding

τr ≡ τg(θ)

τg|θ=φ

=
∣
∣
∣
∣
θ − θt + (C/xs)

1/ν

φ − θt + (C/xs)1/ν

∣
∣
∣
∣

ν(1−Dx)

(11.9)

11.1.2 Comparisons of Calculated Tortuosity with Experiment and
with Simulations

Equation (11.8) can be compared with a number of different simulation values,
including those measured at full saturation for which θ = φ. Koponen et al. [88]
numerically computed the hydraulic tortuosity for flow in a 2D saturated porous
medium with a percolation threshold θt = 0.33. They used square networks of size
100 × 100 (xs = 100) for φ > 0.55, and 200 × 200 (xs = 200) for φ < 0.55. In
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Fig. 11.1 Comparison of
numerically obtained
“hydraulic tortuosity” [88]
with geometric tortuosity
calculated from Eq. (11.8).
Note that all parameters in
Eq. (11.8) are fixed: no
parameters were fitted

order to predict tortuosity using Eq. (11.8), for Koponen et al.’s [88] saturated me-
dia we set the ratio C/Ls = 0.0085 for φ > 0.55, and 0.0043 for φ < 0.55. With
all parameters in Eq. (11.8) fixed, the Koponen et al. [88] results follow theory
very closely (Fig. 11.1). Here Dopt = 1.21, ν = 4/3 (the 2D value), and Koponen
et al. [88] specify θt = 0.33. The error due to ignoring the C/xs term in the nor-
malization, as discussed above, is a negligible 1 % at S = 1: the calculated value is
τg|θ = φ = 0.988.

Figure 11.1 also shows the case in which the finite-size scaling effect was ignored
(C/xs = 0). The comparison demonstrates again how important finite-size effects
become as the percolation threshold is approached, even for systems ostensibly as
large as 200 elements on a side.

Matyka et al. [104] and Duda et al. [43] tried to account for finite size in model-
ing tortuosity in saturated media. The Matyka et al. [104] numerical results for the
tortuosity as a function of the porosity are compared with Eq. (11.8) where θ = φ

in Fig. 11.2(a), while the tortuosity as a function of the system size is shown in
Fig. 11.2(b). All parameter values are fixed. Although Matyka et al. [104] fitted
their numerical results for the system-size dependence of the tortuosity to an expo-
nential function (their Eq. (16)), our Eq. (11.8) does reasonably well in reproducing
both behaviors simultaneously. Matyka et al. [104] concluded, presumably in view
of their exponential fit to the finite size effects on the tortuosity, that finite-size ef-
fects are eliminated above some length scale. However, the existence of clusters at
all length scales at the percolation threshold means that it is impossible to elimi-
nate such effects in a finite-size system. Moreover, in later work [43], these authors
investigated the system-size dependence of the tortuosity at the percolation thresh-
old, and found the power-law divergence predicted in Eq. (11.8). The value of the
power that they reported was 0.19, which compares well with our predicted two
dimensional value of 1.21 − 1 = 0.21.

In our analytical derivation of the geometrical tortuosity for saturated porous
media (τg|sat), Eq. (11.8), based on the optimal percolation path with Dopt = 1.43
for 3D systems, the exponent is −0.378. This is close to the exponent β = −0.4
of the power-law function of porosity (τh|θ = φ = φ−0.4) proposed by Mota et al.
[111], found from experiments on binary mixtures of spherical particles for satu-
rated hydraulic tortuosity. Figure 11.3 shows good agreement between the results of
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Fig. 11.2 Comparison of the
geometric tortuosity
prediction of Eq. (11.8) with
numerical results from
Matyka et al. [104] for both
(a) the porosity and (b) the
system size dependence of
the tortuosity. Again, no
adjustable parameters were
used for the comparisons

Fig. 11.3 Comparison of the
prediction of Eq. (11.8) for
the geometric tortuosity with
results for the “hydraulic
tortuosity” from experiments
on binary mixtures of
spherical particles.
Experimental length scales,
much larger than those
generated by simulations,
permitted neglect of
finite-size effects. No
adjustable parameters were
used

Mota et al.’s [111] model, and the results of calculations based on Eq. (11.8), where
θ = φ using θt = 0 (no percolation threshold consistent with Mota et al. [111]) and
C/xs = 0 (negligible finite-size effect, C 
 xs).

Barrande et al. [9] measured the porosity (φ) and the formation factor (F ) of
porous media composed mostly of spherical particles, and calculated the saturated
electrical tortuosity from the product of porosity and formation factor (τe|θ = φ =
φF ). Their experimental results are compared with the prediction of Eq. (11.8) with
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Fig. 11.4 Comparison of the predictions of Eq. (11.8) for the geometrical tortuosity with exper-
imental results for the “electrical tortuosity” as obtained from the product of the porosity and the
“formation factor.” No adjustable parameters were employed

Fig. 11.5 Comparison of the geometrical tortuosity from Eq. (11.8) with experimental results for
the “diffusive tortuosity” without use of any adjustable parameters

θ = φ, Dopt = 1.43, θt = 0.1φ (a rule of thumb for coarse soils; Hunt [68]), and
ν = 0.88 for 3D systems (Fig. 11.4). The data compare very well with our proposed
saturated geometrical tortuosity (Eq. (11.8)).

Delgado [39] measured diffusion both in free fluid (df) and in saturated, packed
beds of silica sand (dp) with average diameters of 0.496, 0.297, 0.219, and
0.110 mm. Diffusive tortuosity was calculated using the relationship τd|θ = φ =
df/dp. Because the sample length, xs, in Delgado’s experiments is larger than
100 mm, almost three orders of magnitude larger than the sand particles (and thus
the pore size), and we have no evidence that their porosities approach a threshold
value, we assume that the finite-size effect is negligible (C 
 xs). We again set
θt = 0.1φ and used Dopt = 1.43 and ν = 0.88 for 3D systems, and found excellent
match between Eq. (11.8) with θ = φ, and Delgado’s calculated diffusive tortuosity,
τd|θ = φ (Fig. 11.5).
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In conclusion we note that Eq. (11.8), including numerical constants given either
by simulation or experiment, is compatible with all the results from simulation or
experiment investigated, even though the focus in generating the data was on con-
ditions far from the percolation threshold. Furthermore, the same equation, using
a typical range of porosity values, and applying saturated conditions (neglecting
finite-size corrections) yields the observed range of tortuosity values for saturated,
natural media cited in [13]. For most natural media, containing thousands or more
pores in any direction, finite-size effects will have negligible effects on the tortu-
osity, so their neglect is legitimate. Percolation concepts appear to give an accurate
and comprehensive description of tortuosity.

11.2 Longitudinal Dispersion of Solutes in Porous Media

11.2.1 Scope and Definition

Dispersion is a term which, in the present context, describes the spatial spreading
of solutes in porous media under the action of flowing water. This dispersion can
be either in the direction of flow (longitudinal) or perpendicular to it (transverse).
We focus our attention here on longitudinal dispersion. Compounds dissolved in
water in the subsurface are transported by molecular diffusion and advection (mo-
tion of the fluid). We address primarily the effects on dispersion from advective
flow [52, 73, 74, 76], although we also provide an asymptotic treatment of diffusion
[75] valid for relatively high flow velocities. Effects on dispersion from a single
capillary tube velocity distribution, known to produce long-tailed arrival time distri-
butions [23], are neglected.

The solutes we consider may be contaminant plumes from any source, radioac-
tive tracers both experimentally and naturally generated, as well as naturally oc-
curring reactants. Solutes may sorb to surfaces, or they may be non-sorbing. We
do not specifically incorporate effects of sorption here. However, we will compare
our predictions of solute velocities (neglecting diffusion) with experiments (e.g.,
[42, 97, 124, 146, 174, 181]) on the scaling of solute reactions with space and time
scales [77]. The success of these predictions indicates that rates of many reactions in
porous media are limited by the transport of reagents to the surface, or of products
away from the surface, and that the relevant transport is by advection rather than
diffusion.

In order to generate predictive relationships for longitudinal dispersion of so-
lutes, we first calculate the distribution of arrival times, W(t), of solute transported
in steady flow [73]. This calculation has a close relationship to that of finding the
distribution of hydraulic conductivity values in finite-sized systems [66]. In partic-
ular, both are based on the relevance of the cluster statistics of percolation theory
to the distribution of water fluxes in terms of the critical flow from critical path
analysis. Since the critical flow paths are also tortuous, we must also appeal [73] to
scaling arguments of percolation regarding the fractal characteristics of such paths
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[93]. Such an application leads directly to a formulation of solute transport in terms
of both critical path analysis and percolation scaling. W(t) is given initially for the
RS random fractal model of the pore space [134]. Then we extend the result [52] to
find the saturation dependence of the arrival time distribution, using the generalized
pore-solid fractal (PSF) model [21]. The saturation dependence must be known in
order to make comparison with experiments performed under conditions of incom-
plete saturation.

The present calculations yield asymmetric peaks of W(t) with a long tail. The
long-tail behavior is not precisely a power law, though it closely resembles one. This
makes our treatment roughly compatible with the framework for the continuous time
random walk (CTRW) [15, 150, 151], meaning that some general relationships with
CTRW are anticipated, a discussion deferred to the end.

11.2.2 Background Information

Conventional Modeling

A differential equation, commonly called the advection-dispersion equation (or
convection-dispersion equation), is widely used to describe effects of both advec-
tion and diffusive processes on the spatio-temporal behavior of dissolved solutes
(e.g., Sect. 3.4.2, [13, 148]). The equation may be written

∂C

∂t
= ∇ · Dl∇C − u · ∇C (11.10)

where C(x, t) is the concentration of the solute, Dl is the longitudinal (in the direc-
tion of flow) hydrodynamic dispersion coefficient, and u is the velocity of the flow.
In the case u = 0, the only influence on C(x, t) is the solute’s molecular diffusion,
Ds, and so Dl = Ds. But usually Dl is found to greatly exceed Ds. Further, results of
experiments and field observations typically show that Dl has a dependence on both
spatial and temporal scales. This suggests that describing the relationship between
the microscopic process of advection and the macroscopic description of dispersion
as simply being analogous to microscopic diffusion is not adequate.

The velocity u is a random field, generated by solution of

∇ · u ∝ −∇ · K∇P = 0 (11.11)

Here K is the hydraulic conductivity (a random scalar field in isotropic media) and
P is the pressure. Dl may also be assumed to vary from point to point. Thus, one
means to investigate the behavior of solutes in natural porous media is simply to
solve numerically Eq. (11.10) and Eq. (11.11) using assumed stochastic variability
of the coefficients [36, 37, 47, 49, 138, 175]). Such treatments can address some
of the problems of Eq. (11.10), if sufficiently complex media with multi-scale het-
erogeneity are applied. But more comprehensive comparison [76] of the predictions
of “stochastic subsurface hydrology” (for example, [117]) with experiment reveals
serious inconsistencies.
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A conceptual reason for using critical path analysis and percolation theory rather
than a stochastic approach to model fluid flow (and ultimately both solute and par-
ticle transport) is the conclusion of Bernabé and Bruderer [17] regarding pore scale
upscaling of the hydraulic conductivity:

At high [relative variance], owing to flow localization, extreme values of [pressure drop
squared] occurred at deterministic positions. The flow pattern is so strongly controlled
by these huge values [at bottleneck conductances quantified by percolation theory] that
a stochastic description becomes inadequate.

If the flow itself cannot be described by stochastic methods, such methods also
cannot describe the distribution of particle velocities and path lengths. The pore-
scale conclusion of Bernabé and Bruderer [17] is consistent with Shah and Yortsos
[156] conclusion that the critical path analysis framework was best suited to explain
flow channeling in heterogeneous media at geologic scales, such as that observed
by Moreno and Tsang [110]. Our basic method can be applied at either scale.

On the basis of the results and comparisons of this chapter, we argue that the ADE
should never be applied at length scales beyond that of a single pore. Nonetheless,
treatments of solute transport at larger length scales do need to be consistent with
the ADE when reduced to the scale of a single pore.

Quantifying Limitations of the Neglect of Diffusion

Since most of our comparisons with experiment neglect molecular diffusion, it is
important first to define the conditions under which it is acceptable to do so. The
means to evaluate the relative effects of diffusion [125, 139] are based on the ADE.
Under the action of advection, the effects of diffusion appear to be enhanced. The
resulting phenomenon is termed hydrodynamic dispersion, but is typically treated
mathematically simply as diffusion with a velocity-dependent diffusion coefficient.
However, at the scale of a single pore we treat the dispersion term as due to molecu-
lar diffusion. The relevance of advection relative to diffusion may then be estimated
[125] by use of the Peclet number, Pe = Lu/Ds, where L is a pore length scale, u is
the pore-scale fluid velocity, and Ds is the solute diffusion coefficient. Typically it
is assumed that for Pe > 100 diffusion may be neglected, while for Pe < 1 advec-
tion may be neglected. In a study related to the present work, Sahimi and Imdakm
[145] give Pe = 300 as a lower bound for neglecting diffusion. Clearly we should
not exclude the possibility that there is a range of Pe values greater than 1 for which
diffusion cannot be neglected.

Experimental Overview

Based on the success of the approach discussed and expanded on here, Hunt et al.
[76] argued that the only term in Eq. (11.10) that was of relevance to the majority of
experiments (over 2000 discussed) was the advection term. In fact, it was difficult to
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find direct evidence of the importance of diffusion at all. What are the implications
of Eq. (11.10)?

Solution of Eq. (11.10) for steady flow in a homogeneous medium leads to Gaus-
sian spreading superimposed in the direction of flow. Natural porous media of in-
terest (rocks, soils, fracture networks) are never homogeneous, and such Gaussian
behavior of C is seldom actually inferred or observed [6, 7, 15, 34, 50, 92, 103, 115,
148, 159, 176]. A quantity developed, in the Lagrangian representation, to quantify
the discrepancy between experiment and the Gaussian solution, is the longitudinal
hydrodynamic dispersion coefficient [35, 36]

Dl(t) = 1

2

d

dt
σ 2(t) ∝ σ 2(t)

t
(11.12)

where the proportionality follows if σ 2(t), the variance of the spatial solute distri-
bution, is a power of the time t . For Gaussian dispersion, the linear proportionality
σ 2(t) ∝ t makes Dl(t) time independent. Because field experiments are pinned to
an Eulerian representation, Dl(t) may also be reported as the ratio of the variance
to the mean travel length, l. The two representations of Dl(t) are not always equiv-
alent, since the mean solute velocity, us ≡ l/t is not, in general, scale-independent
(e.g., [93, 103]). In fact, Dl typically increases as a power of time [7, 115, 176]:

Dl(t) ≈ tδ (11.13)

with 0 < δ < 1.
Dl increasing as a power of t is considered a difficult point to explain in hy-

drology. The longitudinal dispersivity, αL, usually given as Dl/u, is maybe better
expressed as a function of travel distance x, representing the fractional spreading
in the direction of travel. Thus, a dispersivity that is proportional to x indicates
that the spatial solute distribution has the same appearance at all scales [151]. In
fact, a commonly applied rule of thumb is that αL(x) = 0.1x [50]. In a series of
articles on the value of using the Continuous Time Random Walk (CTRW) in so-
lute transport in groundwater, Scher and co-authors have emphasized that the scale
invariance of the spatial solute distribution is a result of the waiting time distri-
bution ψ(t) having power-law tails. In the CTRW formulations these tails should
have the form ψ(t) ∝ t−1−α , with general relationships available (see this chapter’s
Appendix) to predict such phenomena as the temporal scaling of the typical arrival
time distribution, or the dispersion coefficient. Our results differ slightly from the
exact power-laws proposed in CTRW, however, meaning that the mathematical re-
lationships between CTRW variables do not necessarily hold precisely in our case.

Experiments also reveal other discrepancies with Gaussian spreading. Cortis
and Berkowitz [34] point out that several “classical” solute dispersion experiments
[80, 118, 119, 148]) show breakthrough curves (BTC) for which Gaussian spread-
ing overestimates the arriving solute flux at both short and at long times. A long-
tailed arrival time distribution (for which the variance or even the mean arrival time
may not exist) such as we predict will produce a longitudinal dispersion coefficient
which increases with system size, and is consistent with the deviations from Gaus-
sian scaling of the BTCs listed by Cortis and Berkowitz [34]. Experimental results
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(and practical needs) point to the importance of being able to predict both the entire
arrival time distribution, and a spatial distribution of solutes at a given time.

11.2.3 Theoretical Descriptions

There are several ways to approach such problems. One can develop network mod-
els that require solutions to systems of difference equations (using, e.g., percolation
theory), rather than a single differential equation. This is the approach we follow.
One can use numerical or theoretical methods to treat the variability of the coeffi-
cients in Eq. (11.10). Or one can seek a mathematical framework, which produces
solutions of the type desired. To the third class of approaches belong the Continu-
ous Time Random Walk (CTRW) formulation and fractional differential equations.
Thus such power law tails may be described accurately with a fractional advection-
dispersion equation, in which integer order derivatives in Eq. (11.10) may be re-
placed by fractional derivatives [86, 90, 105–107, 122, 147, 178, 179]. While such a
formulation can model the long-time behavior, it cannot be used to predict it, unless
the order of the derivative can be determined in advance. Further, a fractional dif-
ferential equation does not appear to generate the appropriate short-time behavior
[103]. Additionally, if (as derived here) the long-time tail is not a true power law,
then such a method will not quite describe the asymptotic behavior either.

The Continuous Time Random Walk (CTRW) [84, 150, 158] appears to gener-
ate the entire arrival time distribution (e.g., [16, 19, 34, 103]) in agreement with
experiment (except perhaps at very long times), but like the fractional derivative
approaches it is only descriptive. Nevertheless, the CTRW can provide guidance on
how to predict large-scale behavior from small-scale observations, on account of the
observation that solute distributions tend to maintain the same shape as the plume
evolves. But we wish to predict the entire behavior of C(x, t). We believe that this
restricts the available options to percolation theory.

Percolation theory has been used before to calculate dispersion related quantities
in porous media [5, 10, 63, 87, 93, 98, 123, 129, 145]. But our framework is quite
different from earlier ones, because we disentangle the influences of pore-size distri-
bution from the topological complications of the flow paths described in percolation
theory. In contrast to the saturation dependence of K , for which different aspects of
percolation theory dominate at different saturations, here we find that these different
aspects dominate at different time periods. In particular, the pore-size distribution,
as expressed through a combination of critical path analysis and cluster statistics
of percolation, is important near the peak in the arrival time distribution, while the
tortuosity becomes relevant to the long-time asymptotic behavior, and thus to the
spatial structure of the dispersion coefficient. Our conclusion regarding the rele-
vance of tortuosity to dispersion on account of the dominance of the critical paths
was anticipated in past discussions, at least qualitatively:

Moreover, the critical path analysis [3] indicates that transport in a well-connected system
in which the hydraulic conductivity distribution is broad, is actually dominated by a small
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subset of the system in which the magnitude of the conductivities is larger than a certain
threshold. Heterogeneous porous media can therefore be mapped onto equivalent percola-
tion networks. [136]

This evaluation of Rivard and Delay [136] is consistent with decades of publications
by Muhammad Sahimi, including Sahimi [140, 142]. However, we do not agree with
the quantitative implications of Rivard and Delay’s statement that a direct mapping
is sufficient. Specifically, if the most permeable portion of the system that just perco-
lates is chosen, the paths of flow are infinitely tortuous; following paths with slightly
lower hydraulic conductances would allow solutes to arrive at a much earlier time.
Nevertheless, we agree with the general message of Rivard and Delay [136].

Relationship Between Flow and Transport

It is commonly believed that local variability in the hydraulic conductivity of het-
erogeneous media is a controlling influence on dispersion (see the many texts on
stochastic subsurface hydrology, for example [37, 138]). Since it is clear that the so-
lute transport paths are affected by the entire structure of the medium, and not just
the statistics of the local conductances, there has been a great deal of work in trying
to find the appropriate description of the connectivity of potential flow and transport
paths. In the present description, we use percolation theory to give as much of this
information as possible. But our focus is not to try to generate a realistic model of
the medium. Rather, it is to generate the connectivity and statistics of the hydraulic
conductivity simultaneously with the statistics of solute transport. If medium con-
nections are indeed best described by percolation theory, then the precise description
of the local variability in permeability becomes secondary. One important consid-
eration is that an appropriate average over the possible transport paths should also
generate the hydraulic conductivity.

Consider experiments with wetting fronts in natural media. When the medium
itself is fairly homogeneous (such as relatively uniform sand in a sand dune), such
wetting fronts are often relatively regular. An interesting result from a particular
experiment is that, even though the wetting front was fairly regular, paths of so-
lutes following the fluid could be very irregular [56] (Fig. 11.6). Thus, experiments
already suggest that it is appropriate (as in critical path based calculations of the
saturated hydraulic conductivity, K) to find K by an optimization between fluid
connectivity and pore-size variability, while solute dispersion may better be deter-
mined through an enumeration of all the paths, including effects of both pore size
distribution and connectivity. We suggest that it is the tendency for flow to empha-
size the paths of least resistance which makes the cluster statistics of percolation
relevant both to the distribution of measured K values and to dispersion of solutes.

We have found [69, 70]) that the distribution of K values in anisotropic fracture
networks [152, 154] can be predicted using the cluster statistics of percolation. We
now apply the same concepts to find the distribution of global fluxes. We do not
seek a distribution of streamline velocities. Note that, in the simplified version of the
problem we are considering, solutes are released at one instant in time, even though
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Fig. 11.6 Field experiments [56] reveal a wetting front that is much more regular than solute paths,
broadly consistent with calculations of solute transport in terms of an enumeration of all paths, but
of the hydraulic conductivity in terms of an optimal path (Figure reprinted with permission from
the authors). As pointed out by the authors, these characteristics can be identified much more easily
with a color image. The two photographs are taken at different vertical slices in the medium

in experiments solutes are typically released with equal concentration starting at
one particular time. We can relate these two procedures using a simple integral. In
our picture, the concentration C arriving at any position can be normalized to its
original value, making C equivalent to a probability, W . This furthers use of the
basic probabilistic transformations on which the derivation is based.

Theoretical Development for Dispersion Based upon the RS Model

The cluster statistics of percolation theory have been applied ([66, 70]; Chap. 10)
to the problem of deriving the distribution of controlling resistances (expressed as
conductances, g = R−1) of clusters of arbitrary length, N . Here N is a number
(equal to the number of controlling resistances along one dimension of the cluster);
the linear extent of the cluster must be expressed as the product of N and a typical
spatial separation, l, of controlling resistances. The volume concentration of clusters
of length Nl is then derived from the cluster number ns by using nsds = nNdN (see
Chap. 10 for definitions for ns and nN), and the percolation scaling relationship
(τ − 1)/σν = d [161], where d is the dimensionality of the space and τ , σ , and ν

are percolation exponents. The result is ([66]; also see previous chapter using the
result for p − pc)

nN = 1

Nd+1
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(11.14)

The probability that a given system of Euclidean length, Nl, is spanned by a cluster
with controlling conductance g is then proportional to the integral of NdnN over
clusters of all sizes larger than or equal to the volume in question. The result may
be expressed in terms of the exponential integral,

Ei(z) =
∫ ∞

z

exp(−y)

y
dy (11.15)
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Fig. 11.7 An example of the
pdf, W(g), that the
controlling (bottleneck)
conductance in a system of
size x has value g. Horizontal
axis is in units of gc. Fractal
dimensionality of the pore
space is given

as

W(g) ∝ 1

β
Ei

[

α

(
x
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)β]

(11.16)

where the parameters α and β are given by
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and β = 2

v
(11.17)

Here x is the linear dimension of the system concerned, L3 is a representative ele-
mentary volume (REV) which represents the smallest volume for which statistical
arguments (such as percolation theory) apply, and l is a typical distance between
critical resistances, which can be taken to be approximately equal to L. One can
then set L = 1, meaning that x = 1 corresponds to the REV scale. In the limit that
the pore size distribution approaches a delta function (no width), the REV scale
reduces to the separation of the pores. The result, Eq. (11.16), for W(g) is shown
graphically in Fig. 11.7.

An approximation to W(g) from Eq. (11.16) is given by

W(g) ∝ ln

[(
L

l + x

)1/ν 1
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∣1 − ( g
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) 1−D
3

∣
∣

]

(11.18)

Note that W(g) is a function of system size, and thus W(g) can be explicitly repre-
sented as W(g,x), or as a conditional probability density function W(g|x). Equa-
tion (11.18) shows that the asymptotic behavior of the exponential integral involves
a logarithmic divergence in W(g) at g = gc = 1 as shown in Fig. 11.7. Such a log-
arithmic divergence is integrable, meaning that W(g) is normalizable. This same
result may be obtained [70] by replacing the exponential cut-off of the power-law
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decay in Eq. (11.14) by a sharp cut-off obtained by setting the argument of the ex-
ponential function equal to an arbitrary constant (as implied in [161]).

The solute concentration of the water introduced to the medium can be as-
sumed to be uniform. Thus, although the probability that a given isotropic system
is spanned by a cluster of minimum conductance g is given by Eq. (11.17) and
Eq. (11.18), the mass of solute transported through such clusters characterized by
minimum conductance g must be proportional to the water flux, itself proportional
to gW(g). Since W(g) is a sharply peaked function, the effects on a distribution
of arrival times, W(t), due to the difference between W(g) and gW(g) is, in most
cases, undetectable. Nevertheless, the probability that solute reaches the other end
of a system at time t is clearly proportional to the volume of advecting fluid arriving
at that time, and the solute arrival time distribution, W(t), is thus proportional to
gW(g). The proportionality constant is derived next.

In order to use W(g) to give information on arrival times, we must be able to
relate the controlling conductance, g, of a path to the time, t , solute takes to travel
along that path, t (g). Here, x may be regarded simply as a parameter, independent
of t . Thus the notation suppresses the x-dependence. Then one may use the result

gW(g)dg = W(t)dt or W(t) = gW(g(t))

dt/dg
(11.19)

In the absence of diffusion, the solution for t (g) is deterministic. Note, however,
that since gW(g) is not directly normalized, W(t) must be normalized separately.
First we consider the effects of the pore size distribution on t (g), then we proceed
to examine the effects of connectivity and tortuosity.

In the following, the treatment of a percolation path as quasi-one-dimensional
is not in contradiction to the tortuosity-based arguments; it is merely a first step in
finding the influence of the pore-size distribution on the time of transit of a large
cluster. Thus we decouple the effects of pore sizes and connectivity. As in an effec-
tive resistance, which is the sum of individual resistances along the path, the total
time of travel is equal to the sum of the travel times through the individual pores
along such a quasi-one-dimensional path. This means that it is necessary to find the
transit times of individual pores on a path for which the mass flux is defined through
the largest resistance on that path.

The time that a solute requires to traverse one pore is proportional to 1/u, where
u is the typical velocity in that pore. Then uA, where A is the cross-sectional area of
the pore, must be proportional to Q, where Q is the volume flux of water through the
pore. Thus t ∝ r/u ∝ rA/Q, and rA is proportional to r3, the volume of the pore.
Q for all pores along a quasi-one-dimensional critical percolation path is identical
and equal to Qc, which is proportional to gc. Similarly, Q for all pores along a
quasi-one-dimensional path near critical percolation is proportional to g, where g is
the controlling (smallest) conductance on such a path. The probability that a given
pore has radius r is proportional to r−D−1 [71], although the fractional volume in
such pores is proportional to r3r−D−1 = r2−D . Q is a volume per unit time, but
the time factor is explicitly removed (and called t0) below so that Q is effectively
only a volume. Under those stipulations, Q is r3, and t0 is a fundamental pore
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time scale. The value of t0 is not required because only functional dependences are
relevant below. Using these inputs it is possible to write the following expression of
proportionality:

t (r) ∝ t0
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]

(11.20)

The division of the integral into two terms is useful for expressing the time in terms
of the critical time for percolation. The input into Eq. (11.20) is consistent with
the assumption that the paths followed by the solute are straight. Equation (11.20)
must therefore be modified to account for the effects of the tortuosity as well as the
influence of the branching topology on the transit time. The tortuosity was noted to
follow

τg ≡ Λ

χ
∝ |V − Vc|ν(1−Dopt) (11.21)

where Λ is the actual (tortuous) path length, V is an arbitrary volume fraction and
Vc its critical value for percolation. In the present context V and Vc may be con-
sidered to correspond to the volumetric moisture content, θ , and its critical value
for percolation, θt, even though the specific problem to be addressed here involves
saturated conditions. We cite Lee et al. [93] to support our substitution of the expo-
nent Db in place of the Dopt in Eq. (11.21). The effect of tortuosity is to lengthen
each individual time by the factor represented in Eq. (11.21); thus the combined
effects of streamline fluxes and tortuosity is given by the product of Eq. (11.20) and
Eq. (11.21). An additional factor of (x/L)Db enters to give the explicit dependence
on the Euclidean measure of the system size, x, in terms of the length, L. Evaluating
the integrals in Eq. (11.20) and combining with Eq. (11.21) then yields
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Equation (11.22) may be further manipulated to yield
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which serves to define the cluster transit time tg. The dependence of tg in Eq. (11.23),
which contains a power-law divergence at g = gc, is depicted in Fig. 11.8.
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Fig. 11.8 An example of the
time, t , of transit through a
cluster of minimum
conductance, g for specific
values of the fractal
dimensionality of the pore
space and critical volume
fraction for percolation.
Horizontal axis is in units
of gc

Note that the vicinity of the percolation threshold occurs here in the limit of in-
finite time. For g near but somewhat less than gc, there occurs a minimum in t (g).
This minimum, broadly speaking, corresponds to the optimal conductance which
defines the hydraulic conductivity of an infinite system. How can this be under-
stood?

A non-vanishing K cannot be calculated from a subnetwork of the system, when
the subnetwork is just at the percolation threshold. Even though the critical perco-
lation condition defines the most conductive pathways in the system, their spatial
separation is equal to χ , which diverges at the percolation threshold, producing an
effective conductivity of zero. Thus the network for calculating K must also in-
clude a few g < gc reducing the conductance of each path but greatly increasing
the number of effective paths. The system conductivity is then calculated using an
optimization procedure [48, 67]. This optimization procedure winds up pinning the
controlling g near gc, similarly to the way the minimum in t (g) is tied to gc.

Under extreme circumstances of very high disorder in very small systems, this
minimum can create a spike in our solutions for W(t); however we do not expect
that such a spike (which is a result of dt/dg = 0, i.e., many paths with the same
arrival time, t) would survive if our calculations take into account the spreading in
W(t) due to (for example) the varying velocities within an individual pore. Note as
well that in the immediate vicinity of the peak in t (g), the contribution from the
variability of the flux (the first factor in square brackets) is negligible in comparison
with the tortuosity (the second factor in square brackets), except in the limit of
vanishing θt. As a consequence, one finds the effects of t (g) on the asymptotic,
large time behavior of W(t) to be
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Fig. 11.9 Comparison of the
results for the arrival time
distribution, W(t), for (a) two
different values of the fractal
dimensionality of the pore
space, and (b) two different
values of the critical volume
fraction for percolation

W(t) ∝
[
A

t

] 1+(η−v)
η−v

(11.24)

with A a constant. However, in the cases we have checked so far, the absolute value
of the power predicted by Eq. (11.24) has exceeded by about 0.5 the result gen-
erated by numerical analysis of the full distribution. So this estimate is not use-
ful for predictions in finite-sized systems, while we cannot test it in the infinite
limit.

A full numerical solution for W(t) from Eq. (11.19), using Eq. (11.23) for t (g),
gives the results shown in Fig. 11.9 for two-dimensional random percolation system,
for various combinations of fractal dimensionality and critical values of the moisture
content. Note the relative insensitivity of the shape of W(t) to variations in system
parameters, an important result.
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Modification for More Flexible Pore-Size Distribution and Saturation
Dependence

We have performed an analogous derivation to that which led to Eq. (11.16) for
unsaturated conditions, using the generalized PSF model [21]. The principle reason
for using such a strategy is that the PSF model can more easily be fit to a wider range
of experimental data, even if its use is not necessarily preferred. Consequently one
can obtain all the parameters that are not constrained by percolation theory directly
from experimental data for the soil water retention curve. Our result [52] was

Wp
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) ∝ 1

b
Ei

[

a

(
x

L

)b(
β − φ + θ − θt

β − θt

)]
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Since upper and lower limits to the local conductance distribution have been as-
sumed, the distribution of blocking conductance values given by Eq. (10.25) must
have upper and lower limits as well. These are given by

gmax = gc
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] 3
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and
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In order to find a distribution of arrival times, we must find the typical arrival
time, t (g|x, θ), as a function of volumetric moisture content θ , travel distance x,
and controlling conductance g. Using the PSF model we find
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Combining Eq. (11.25) and Eq. (11.27) using the same probabilistic identity
(Eq. (11.19)) yields the arrival time distribution. In the case that β = 1, the PSF
model reduces to the RS model (Chap. 4).

There are a few complications in the process just shown. In order to find the
arrival time distribution explicitly, one must invert the relationship for t (g) to find
g(t). While the former is single-valued, the latter is not; thus it is necessary to apply
Eq. (11.19) to every conductance g which defines a cluster with a given t . In fact,
as can be seen by examining Fig. 11.8, this inversion may have one, two, or even
three solutions. These different solutions, especially at large t values, correspond to
different physical situations. A large time can result from a very small controlling
conductance, or from a conductance slightly above or below the percolation thresh-
old. Thus, either very tortuous paths, or paths with smaller pore sizes, contribute
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Table 11.1 Fractal
dimensionality of the
backbone on two- and
three-dimensional lattices
[160]

Percolation variation Db

2d 3d

Site non-trapping invasion percolation 1.642 1.868

Site trapping invasion percolation 1.217 1.861

Bond trapping invasion percolation 1.217 1.458

Random percolation 1.643 1.870

to W(t) at longer times, while at the very longest times the behavior is controlled
by the tortuosity of the paths near the percolation threshold. On the other hand, the
short-time behavior is governed by large conductances below the percolation thresh-
old only. The inversion of t (g) near the percolation threshold is also difficult, if one
wishes to find an accurate numerical representation of the tail.

In our investigations of the solution that was generated by this process, we saw
only a weak dependence on moisture content of the arrival time distribution. But
this is only a part of the story. It has been argued ([160], summarizing earlier papers
by Muhammad Sahimi and co-workers) that the processes of wetting and drying are
fundamentally different percolation processes. According to Sahimi [143], wetting
is site invasion percolation with trapping, while drying is bond invasion percolation
with trapping. Under full saturation conditions the topology of the system should
be consistent with random percolation, since the topological constraints introduced
by trapping will have disappeared; moreover the value for Db from site invasion
percolation with trapping is nearly identical to its value from random percolation
(Table 11.1), so that even incompletely saturated media on the wetting curve should
still be compatible with the choice Db = 1.87. Thus, in three dimensions, we need
to use Db = 1.46, for unsaturated conditions under drying and Db = 1.87 other-
wise. The value of the exponent ν is, as before, 0.88. The remaining parameters are
system specific. If the flow is two-dimensional, for example the well-known case
of wall flow in core experiments on very coarse media, one should use Db = 1.21
under conditions of either wetting or drying, and Db = 1.6432 otherwise. In two
dimensions, of course, ν = 4/3.

For the purposes of comparison with experiment, variations in the values of Db
that are less than 1 % have been ignored. Thus for each flow configuration, two
dimensional or three dimensional, we have distinguished only two possibilities.

11.2.4 Comparison with Simulations

Liu et al. [96] reported on simulations of flow and transport on a 2D percolation
structure at the percolation threshold. They did not incorporate any effects of diffu-
sion, nor did they include any effects that would be equivalent to a pore size vari-
ability. They solved the Navier-Stokes equations for flow, then used particle tracking
methods to determine W(t) (Fig. 11.10). Such a model lends itself to comparison
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Fig. 11.10 Comparison of the predicted distribution of arrival times with results of numerical
simulations by Liu et al. [96]. Both calculation and simulation were done in two dimensions and
without accounting for diffusion. Note that three adjustable parameters were used to generate the
agreement with spatial system size 10, but the same parameters were used for system size 50.
Further, the fractal dimensionality of the pore space used, D = 1, corresponds to a system with a
very narrow range of pore sizes, generally consistent with the constraints of the simulations, which
include no such range

with our predictions, provided we force the model to be consistent with a very nar-
row range of pore sizes. This restriction is easy to treat using our simple RS model
[134]. Further, this model has the smallest number of unknown parameters. In or-
der to fit the curve with our result for W(t) we employed three such parameters: an
absolute time scale t0, the critical volume fraction for percolation θt, and the fractal
dimensionality of the pore space. These parameters, including θt = 0.25, and D = 1
(nearly homogeneous), were found by comparison with the curve for L = 10, and
then our prediction for L = 50 was compared with simulation. The two-dimensional
values of the parameters Db = 1.6432 and ν = 4/3 were dictated by percolation the-
oretical arguments made above.

We demonstrated above that W(t) varies little with the pore-space parameters D

and Vc; nevertheless, large values of D appropriate for disordered natural media do
produce a noticeable downward curvature at larger times, distinct from the numer-
ical simulations. We find that D = 1, which for φ = 0.5 would be consistent with
r0 = rm/

√2 (a very narrow pore-size distribution), gives a reasonably good shape
fit with simulations. Note that in the absence of disorder, the REV length scale is a
single pore length, so that a simulation length scale of 1 [96] corresponds exactly to
our system length of 1. Larger values of Vc tended to produce a narrower peak: we
found that a rather large value, Vc = 0.25, produced the closest fit. In retrospect, we
may have preferred to see an even larger value (such as 0.5, pc for a square lattice in
2D), but we have left out numerical constants throughout the derivation, so we find
that for an effectively two-parameter fit (the chosen D at very nearly the “ordered”
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limit of the RS model is at least somewhat constrained) we have relatively good
results. More impressive is that, for exactly the same parameters generated by com-
paring the L = 10 curve with our functional form, we generate almost precisely the
correct form for W(t) at L = 50, including the appropriate narrowing of the peak
on the short-time side.

11.2.5 Comparison with Experiments

Comparison with experiment brings in additional uncertainties. To identify a few,
(1) Experimenters typically report a quantity different from W(t), (2) Experimental
results include the effects of experimental error, and (3) Experiments cannot turn off
the effects of molecular diffusion, though they may be small enough to be negligi-
ble. Experimentalists typically measure what is called a breakthrough curve (BTC;
see Sect. 3.4.2). An experiment in which solute is transported through a medium by
flowing water can be performed in a column of centimeter scale radius and decime-
ter scale height (in other words, 103–105 pore separations). Water flow through a
system is allowed to reach steady state, i.e., it is uniform in time and nominally uni-
form in space. Then, starting at time t = 0, solute is released at a steady rate into the
water flux. The experimenter then measures 1 − C as a function of time at the bot-
tom of the column. Note the difference between the typical experimental procedure
and a delta-function (pulse) introduction of solute, for which the measured ratio of
C(t) at some particular x value to the proportionality constant in front of the delta
function corresponds to W(t). The result of the experimental procedure described
is a solute flux, which steadily rises to a value of 1.

Since rate of solute release is typically constant, the functional form of the release
corresponds to a Heaviside step function, and the temporal dependence of the mea-
sured C represents the indefinite integral of W(t), with the BTC being 1−∫

W(t)dt .
The negative of the time derivative of the measured BTC thus corresponds to our
W(t). For the purpose of investigating the tail of W(t), it may be preferable to com-
pare theory with this derivative rather than to integrate the theoretical prediction and
compare with the BTC. The reason is that the magnitudes of the two terms, 1 and the
indefinite integral, are nearly equal. Even roundoff error in the normalization con-
stant will impair accuracy at large t , so we chose instead to compare our expression
for W(t) with the negative of the time derivative of the experimental 1 − ∫

W(t)dt .
That comparison, however, requires choosing some continuous representation of the
(discrete) experimental data, which carries some risk of its own.

Cortis and Berkowitz [34] summarize results of three “classical” experiments
in solute transport: Scheidegger [148], Nielsen and Biggar [118, 119], and Jar-
dine et al. [80]. We checked first whether our theoretical procedure is generally
compatible with these experiments. First we calculate a predicted local power,
α(t) = d(log[W(t)])/d(log[t]) for all times subsequent to the peak. In Fig. 11.11
we see that α at first drops rapidly from zero, then it almost levels off but continues
to diminish slowly. This slope can be compared with values of β + 1 (Margolin and
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Fig. 11.11 Prediction of
local slope of log[W(t)] vs.
log[t] compared with
experimental values for an
average slope reported by
Cortis and Berkowitz [34].
Predictions are for both
random percolation and bond
invasion percolation with
trapping (relevant to an
approach to the critical
moisture content for
percolation in unsaturated
soils), for three-dimensional
systems

Berkowitz [103] refer to Shlesinger [158], who showed that if the asymptotic behav-
ior of W(t) is a power law with power α, then the power β that appears in the CTRW
is given by β = α − 1). In Fig. 11.11 we see that the slopes of the two most distinct
predictions in three dimensions, random percolation and invasion percolation (on
account of the significantly different values of Db = 1.87 and 1.46 respectively)
enclose the reported values of β + 1. We emphasize, however, that we do not yet
know even if all the individual slopes that have been measured can be reproduced
by any combination of system-specific parameters that would be reasonable with
the appropriate choices of Db and ν from theory, and we certainly have not tested
every individual case to see whether our treatment is predictive. However, since the
previous edition we have investigated the case of Jardine et al. [80], and found that
our predictions do conform to their observations.

The ideal test would be to find a medium for which the pore-size distribution
was known, and then to calculate the arrival time distribution without any unknown
parameters. We do not have any such systems available with which to make such
useful comparisons.

It is important that the arrival time distribution has a scaling time, t0, which de-
fines the solute transit time across a relevant pore. In general we cannot calculate this
time exactly. However, we assert that it should scale with saturation inversely to the
unsaturated value of the hydraulic conductivity, K(θ). Interestingly, K(θ) is much
more sensitive to the actual saturation value than is the functional form of W(t).

Three soil experiments by Jardine et al. [80] were used to evaluate how the pre-
dicted arrival time distribution compares with the experimental measurements. Un-
fortunately the water retention curve is not available for these datasets. By fitting
our model to the numerically calculated arrival time distribution obtained from ex-
periments for the saturated case (h = 0 cm), in which Db = 1.87 and θ = 0.549
(Fig. 11.12), we fitted our parameters and found D = 2.966, θt = 0.15 and β = 0.8.
As predicted, Db = 1.87 describes the saturated case very well. We then used these
same D, θt and β values to predict the arrival time distribution for unsaturated cases
(h = 10 and 15 cm), changed the value of Db to 1.46 (from random to invasion per-
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Fig. 11.12 Comparison of
the predictions of the
saturation dependence of the
arrival time distribution with
experiments of Jardine et al.
[80]. We fitted the first result
under saturated conditions
(θ = 0.549), but those fit
parameters also generated
good arrival time distribution
shapes at higher tensions, as
well as the dependence of the
fundamental time scale on
saturation (to within typically
8 %)

colation), consistent with the usual experimental practice of producing unsaturated
media along drying curves. The results (Fig. 11.12) indicate that Db = 1.46 is an
excellent choice for tension h = 15 cm (at saturation S = 0.93). But the intermedi-
ate case at 10 cm tension (S = 0.97) is not well described by Db = 1.46; rather, we
found that Db = 1.87, the appropriate value for saturated conditions, predicted the
arrival time distribution more accurately (Fig. 11.12). Although the experimental ar-
rival time distribution curve actually appears to conform to the random percolation
prediction for intermediate time scales, the prediction was not accurate at large time
scales, where a smaller value of Db would have worked better. Thus, at 97 % of
saturation, the experimental results still more closely resemble random percolation,
except over very long length and time scales, and it is only at saturation as low as
93 % that invasion percolation is clearly a superior choice.

We also found that the typical pore-crossing time t0 should inversely scale with
hydraulic conductivity, t0 ∝ K−1, in which K is [52]:

K(θ) =
⎧
⎨

⎩

KS
[β−φ+θ−θt

β−θt

]D/(3−D)
θx ≤ θ < φ

KS
[β−φ+θ−θt

β−θt

]D/(3−D)( θ−θt
θx−θt

)2
θt ≤ θ < θx

(11.28)

where KS is the saturated hydraulic conductivity, and θx is the cross-over point on
the hydraulic conductivity curve which distinguishes percolation scaling from frac-
tal scaling [51]. Note that Eq. (11.28), in the case that β = φ, generates the known
form of non-universal scaling of the hydraulic conductivity derived by Balberg [8].
Although this initial analysis does not imply β = φ, a second comparison below
does.

The time values at the peak of the arrival time distribution (tp) for h = 0, 10, and
15 cm are about 20, 200, and 3000 min, respectively (Fig. 11.12). Therefore, the ra-
tios tp(h = 10)/tp(h = 0), tp(h = 15)/tp(h = 10), and tp(h = 15)/tp(h = 0) would
be 10, 15, and 150, respectively. The corresponding ratios, K(θ = 0.549)/K(θ =
0.533) = 8.8, K(θ = 0.533)/K(θ = 0.513) = 16.4, and K(θ = 0.549)/K(θ =
0.513) = 144.1, were calculated using Eq. (11.28) with D = 2.966, θt = 0.15 and
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Fig. 11.13 Data from
Cherrey et al. [30] for the
water retention curve and
extraction of the “best fit” set
of WRC parameters using the
PSF model

β = 0.8. Accordingly, the discrepancies in the values of t0 were 12 %, 10 %, and
3 %, respectively. Thus, the same set of system-specific parameters yields both the
appropriate shapes of the arrival time distribution, and the scaling of the most likely
arrival time, as functions of saturation.

In a second test, we used 6 Hanford sediment experiments measured by Cherrey
et al. [30] at different saturations: θ = 0.4 (saturation), 0.237, 0.204, 0.172, 0.139
and 0.126. The measured water retention curve (Fig. 11.13) indicates that the critical
water content for percolation θt is about 0.074. Fitting the WRC for the generalized
PSF model to the measured data yielded D = 1.95, β = 0.4 and hmin= 4.75 cm.
We used these system-specific parameters to calculate results for W(t), and com-
pared with the experiment (Fig. 11.14). We emphasize that for the case β = φ, the
generalized PSF model is consistent with non-universal scaling of the hydraulic con-
ductivity. In our comparison with experiment (Fig. 11.14), we used the fundamental
time scale, t0 as a single adjustable parameter, but when we compared the fitted val-
ues of t0 over several orders of magnitude of variability with the predicted scaling of
K(θ), we found the deviations from prediction to be typically only 20 %. Thus we
predicted the shape of the distribution very well, and were even able to predict the
dependence of the time scale on saturation reasonably well, both within the same
framework and without using adjustable parameters. The framing of the problem
within critical path analysis leads to a non-universal scaling of K(θ), even though
the dispersion is dominated by quasi-universal exponents of percolation theory. This
contrasts with a recent publication of Sahimi [144], where it was argued that non-
universality of conduction exponents should produce non-universal behavior in the
dispersion as well. We concede that this question is as yet unresolved, though it
appears that so far the experimental data favor our theoretical framework.

Although we predict the dependence of the arrival time distribution on saturation
very well for the unsaturated medium in this series of experiments, the predicted
arrival time distribution for complete saturation, which was narrower than at unsat-
urated conditions, did not match our predictions at all when we used the exponents
from 3D random percolation (Fig. 11.15). Given that the particle size distribution
was rather coarse, however, which is known to be a contributing cause for wall flow,
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Fig. 11.14 Prediction of the
corresponding arrival time
distributions as functions of
saturation for the medium
parameters extracted from
Fig. 11.13. One single
adjustable parameter, the
absolute time scale was used
in the comparison, but our
result for the saturation
dependence of the hydraulic
conductivity was able to
predict the variation of t0 over
3 orders of magnitude within
a factor 2

we decided to investigate the possibility that the dispersion experiment performed
under ostensibly saturated conditions could be influenced by this phenomenon.

The problem in wall flow is that the boundary of the core wall and the medium
may be distorted by the presence of many coarse particles, producing a region of
higher porosity and, at least near saturation, preferential flow. Given such large pores
on the boundary, it may be difficult to maintain the medium at saturation. But be-
cause these large pores contribute only a small fraction of the total porosity, they
may drain even if the medium as a whole is at, say, 99 % saturation—which is quite
difficult to distinguish from 100 % saturation. Since the boundary might thus be
unsaturated and its configuration is two-dimensional, but its flow rate nevertheless
the fastest, 2D invasion bond percolation with trapping could be the best descrip-
tion. This combination of exponents produced a much closer correspondence with

Fig. 11.15 Prediction of the arrival time distribution for the medium of Cherrey et al. [30] when
the medium was considered to be fully saturated. In this case it was possible to come close to the
actual arrival time distribution only when using percolation exponents appropriate for two-dimen-
sional invasion percolation, suggesting that the experiments were inadvertently conducted under
conditions of partially saturated wall flow
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experiment (Fig. 11.15), except at large times, where we still overestimate arrival
times.

In conclusion, we find that arrival time distributions under saturated conditions
should normally have longer tails than during conditions of drying, on account of
the more tortuous paths associated with the larger fractal dimensionality of the back-
bone for random percolation, 1.87, than for invasion bond percolation with trapping,
1.46. However, if preferential flow along the wall can occur, then the wall flow may
dominate the arrival time distribution at or near saturation. In such a case a two-
dimensional value for Db should be chosen; for saturated conditions this would be
1.6432, which is still larger than 1.46. However, it is possible that, owing to the
much larger pores along the wall, wall flow could dominate even under conditions
that make the flow along the walls unsaturated. If the total porosity along the wall
is small enough (say 5 %), this part of the medium could be 80 % saturated even
though the medium as a whole is 99 % saturated, which would be difficult to dis-
tinguish from full saturation. In such cases the appropriate fractal dimensionality to
use at ostensibly fully saturated conditions would be two-dimensional invasion per-
colation, 1.22. The smaller backbone fractal dimension for 2D invasion percolation
will produce a much narrower distribution of arrival times for saturated conditions.
Further, the relationship between saturated and unsaturated values of the hydraulic
conductivity would be complicated, because different pore size distributions as well
as different critical volume fractions for percolation would apply. The hydraulic
conductivity is much more sensitive to small variations in the characterization of
the medium than is the dispersion.

11.3 Spatial Distribution at an Instant in Time and Its Moments

Calculating the spatial distribution, W(x), of solutes at a given time (the “resident
concentration” in hydrology terms) is clearly related to calculating the distribution
of arrival times at a given point in space (the “flux concentration”). However, we
cannot simply integrate over all g holding x constant, since each g value is asso-
ciated with its own particular velocity, and only one value of g produces a given
value of x. On account of the logarithmic dependence of W(g,x), it is not pos-
sible to use simple relationships between spatial and temporal scales, as is im-
plied in the publication by Margolin and Berkowitz [103] and the references cited
therein.

Consider again the statistics, W(g,x), of clusters of size at least x dominated
by minimum conductances g. W(g,x) represents once again the probability that an
arbitrary particle will initiate its motion on such a cluster and can also travel at least
x on that cluster. If the solute is on a cluster described by W(g,x), then its distance
of travel, x, and mean velocity, 〈u〉, will be related by x = 〈u〉t , where t is the time
since the solute was initially introduced, and 〈u〉 is dependent on scale, x, as well
as on g. For consistency we require this distance x to be identical to x in W(g,x).
The pore size dependence of the mean velocity is independent of the distance of
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travel, and can be roughly estimated using the framework already introduced above
as being inversely proportional to t (g) (in particular as t0/t (g)). Now, x ∝ t1/Db , so
that 〈u〉 = x/t ∝ t (1/Db−1) ∝ x1−Db . Using these inputs we find that,

〈u〉 ∝ u0

(
t0

tg

)(
L

x

)Db−1

(11.29)

where u0 is a pore scale velocity. Then one can write for the distance traveled,

x = 〈u〉t = t

(
L

tg

)(
L

x

)Db−1

(11.30)

where L ≈ u0t0. Solution of this equation for x/L0 gives

x = L

(
t

tg

) 1
Db

(11.31)

Note that Eq. (11.31) could have been obtained more easily by solving Eq. (11.23)
for x, but now we also have an expression (Eq. (11.29)) for solute velocity. The
probability that the particle has actually gone this distance x (at time t) is then given
by the probability distribution W(g,x) given in Eq. (11.16) and Eq. (11.17), but with
the value of x(t) inserted from Eq. (11.31). Then the logarithmic approximation of
W(g,x) (Eq. (11.18)) becomes

W(g) ∝ ln
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(11.32)

With W(g) now in a form which expressed both factors in terms of the same g value,
we can make a direct translation between W(g) and W(x), similarly to Eq. (11.19):

W(x) =
(

W(g,x(t, g))

dx/dg

)

(11.33)

where dx/dg is obtained from Eq. (11.27) in terms of dtg/dg from Eq. (11.23), and
where the final step involves solving for g in terms of x and t using Eqs. (11.26a)–
(11.26b). Thus the results will include the value of the time as a parameter, just
as Eq. (11.19) included the value of the spatial coordinate x as a parameter. Us-
ing Eq. (11.29) it is possible to calculate the second moment of the spatial so-
lute distribution σ 2(x), with time as a parameter, and the dispersivity αL as the
ratio σ 2(x(t))/tu(t). In practice we have simply calculated the dispersivity as
(〈x2〉 − 〈x〉2)/〈x〉, where all individual quantities are directly determined from the
spatial distribution, although in Sect. 11.8 we show graphically what effect such an
approximation has on the dispersivity.

11.4 Comparison of Dispersivity Values with Experiments

First we consider how the dispersion depends on disorder. Our prediction is that the
dispersivity first increases with increasing disorder of the medium (or heterogene-



364 11 Properties Based on Tortuosity

Fig. 11.16 Dispersivity of both relatively homogeneous and “heterogeneous” micromodels as a
function of system length. Note that the “diamond” and “ellipsoid” descriptions correspond to
nearly homogeneous media, while their dispersivity functions appear roughly compatible with the
homogeneous limit from predictions, but the “heterogeneous” medium produces a dispersivity
compatible with a much larger fractal dimensionality of the pore space (D = 2.6), and thus a
relatively wide range of pore sizes

ity), but later diminishes. The increase is only about a half an order of magnitude.
We were originally unaware of this non-monotonic behavior [73, 74]. However, it
is typically considered that the dispersivity, at least for relatively small flow het-
erogeneity, is an increasing function of heterogeneity. Under these conditions we
cannot make a definitive statement regarding the deviation between our prediction
(Hunt et al.’s [76] Fig. 7) and the results from Aggelopoulos and Tsakiroglou [1],
for which the dispersivity rises monotonically with increasing heterogeneity, albeit
more slowly with continued increase in heterogeneity. Their results are from three
different experiments at different scales, so perhaps they should be compared with
three different theoretical curves, each with different model characteristics, and each
exhibiting a peak at a different value of the conductivity contrast?

We also consider two specific cases [12, 38], for each of which the dispersivity is
given for two different magnitudes of heterogeneity. We show that our predictions of
the scale dependence of the dispersivity were verified at least approximately in each
case (Figs. 11.16 and 11.17). In Fig. 11.16, from micromodel experiments, the ho-
mogeneous media are described as “diamond” or ellipsoid. Although we predict the
general trends quite well, in order to achieve the agreement seen it was necessary to
choose a value of the RS fractal dimensionality D somewhat different than the value
we estimated from medium characteristics. The same held true for the experiments
in Fig. 11.17, where “channeled” refers to the more disordered medium.

Considerable attention has been paid to the spatial dependence of the dispersiv-
ity. It has long been known that measured values of αL tend to be proportional to
the system size. For small distances relative to L the behavior of the dispersivity
as a function of length scale is quite non-universal (Fig. 11.18), but its behavior ap-
proaches universality with increasing length scale. This universal behavior is consis-
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Fig. 11.17 Similar to Fig. 11.16, except that in this case the data are taken at greater length scales
and the “channeled” system is macroscopically heterogeneous. Note that the value of the fractal
dimensionality predicted from pore space information (2.4) is somewhat smaller than an optimal fit
(D = 2.7), though still easily distinguished from the more nearly homogeneous system of D = 0,
which fits the data for the randomized system rather well except for two points

Fig. 11.18 Compilation of approximately 1500 dispersivity measurements from the given sources,
compared with the envelope of predicted dispersivity values

tent with a slope slightly larger than 1 (Table 11.2), a result also obtained by Sahimi
and Imdakm [145].

The universal behavior derived (see Figs. 11.19, 11.20 and 11.21) is also nearly
identical to a rule of thumb (α ≈ 0.1x) noted in a review [50] of field data for
the dispersivity over 20 years ago. Note that at large length scales, the invasion
percolation models typically yield slightly smaller dispersivity values (not shown in
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Table 11.2 Predicted exponents of dispersivity in the regime of “universal” behavior at large
length scales [74]

Model Invasion Random

2d 3d 2d 3d

order disorder order disorder order disorder order disorder

Slope 1.1 1.09 1.15 1.14 1.07 1.02 1.16 1.13

Fig. 11.19 Demonstration that individual experiments at lab (1 m) scales also contain a scale
dependence of the dispersivity

detail). This pattern also holds in Fig. 11.21, where we show data over 10 orders of
magnitude of length scale.

The envelope of predicted dispersivity values coincides remarkably well
(Fig. 11.18). with results from over 1500 experiments [11, 29, 38, 61, 62, 79, 83,
117, 121, 155, 164, 171]. In this figure we chose the same fundamental length scale
of L = 1 meter for all models and experiments, leading to the agreement shown.
This is a point of great significance, to which we will return shortly. Points labeled
“field, fractured” and “field, porous,” as well as some lab measurements, were com-
piled by Neuman [115] and Pachepsky et al. [121]. Other references are described
explicitly in the figure caption.

Some authors contend that the scale effect on the dispersivity is not seen in
individual experiments, and have indeed constructed experimental configurations
that do not exhibit such a scale effect (e.g., [164]). However, we point out that all
of the experimental results from [164] lie within our envelope of predicted values
(Fig. 11.18). Thus it becomes important to document whether the spatial scale effect
on the dispersivity is also seen in individual series of experiments. Our results for
7 datasets we investigated are given in Fig. 11.19. Each is in accord with the over-
all trend (Table 11.3). Other individual datasets that we investigate separately also
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Fig. 11.20 Approximately 680 measurements of the dispersivity of various micromodels from
Baumann compared with predictions of the envelope of dispersivity values predicted in percolation
theory. The difference between the predictions in Fig. 11.18 and those shown here is that the
fundamental length scale has been reduced from 1 m to 240 μm, consistent with the maximum
experimental length scale of a few millimeters in the micromodel experiments

Fig. 11.21 A display of all 2200+ experimental results for the dispersivity showing their general
consistency with the rule of thumb from Gelhar et al. [50] and predictions of percolation theory

show this behavior, as do most of the individual datasets compiled in [121] and the
680 experiments reported in [12]. As an additional indication, Fig. 11.19 suggests
that the individual dispersivity curves all correspond to one of our predicted cases
(compare Fig. 11.18).

Note that the effective slope, found by considering all the experiments in Ta-
ble 11.3 as a single series, is considerably smaller than Gelhar et al.’s [50] rule of



368 11 Properties Based on Tortuosity

Table 11.3 Experimental
exponents for dispersivity in
non-universal regime at short
length scales

aThe data from Baumann et
al. [11] were combined with
data from Robert Ewing that
were obtained at a larger
length scale
bThe two series from Huang
were distinct and could be
treated separately

Data set # Points Approximate
power

R2

Chao et al. [29] 41 1.9 0.55

Kim et al. [83] 38 0.99 0.62

Huang et al. [79] 24 0.76 0.82

Danquigny et al. [38] 23 0.51 0.46

Seaman et al. [155] 16 0.88 0.20

Baumann et al. [11]/ Ewinga 24 1.5 0.95

Huang et al. [78]b 12 2.5 0.83

Effective values 174 0.83 0.56

thumb, which gives a power of 1. But the rule of thumb does a better job of predict-
ing the dispersivity behavior over the scale of the experiments shown, as can be seen
(Fig. 11.19); it will continue to do better when more length scales are considered.
Our approach does even better, as it is consistent with the tendency of experiments
to generate slopes smaller than 1 when their results plot above the rule of thumb
line, and slopes larger than 1 when their results plot below the rule of thumb. On
the other hand, focusing on too small a range of scales (e.g., field scales; see papers
by Neumann) while neglecting other scales (e.g., lab and micromodel scales) allows
one to erroneously conclude that the power of the dependence of the dispersivity vs.
length scale is much larger than 1. Thus our discussion appears to resolve a conflict
between Schulze-Makuch [153] and Neuman [116].

As a further check we can compare our predictions to measured dispersion from
micromodels (Fig. 11.20). Baumann et al. [11] conducted 680 experiments over
scales of a few microns to about 1500 microns, with the effective pore separation
about 1 μm. In Corapcioglou et al. [33], the pore separation was about a millimeter
and experiments were conducted at 6 different length scales; unfortunately we could
glean with relative certainty only two dispersivity values from their text.

In order to validate our predictions we used a range of D values nearly the same
(but slightly smaller, stopping at 2.95 instead of 2.97) as for lab and field scales,
as well as the same value of the critical volume fraction for percolation. Since the
largest system size in Baumann et al. [11] was on the order of millimeters, one
would not expect that a correlation length of 1 m would still be relevant! Chang-
ing the micromodel correlation length to 240 μm allows our envelope of predicted
dispersivity values to match experiment (Fig. 11.20) quite well: 99.5 % of the mi-
cromodel values lie within our predicted bounds. Obviously, the correlation length
for data of Corapcioglou et al. [33] should be much larger than for those of Bau-
mann et al. [11], since their glass bead diameters were approximately 1 mm, almost
a factor 1000 greater than the fundamental structure in Baumann et al. [11]. If the
two data points from Corapcioglou et al. [33] are omitted (because their dispersivity
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should not be approaching universal behavior), then our predicted range of values
contains nearly 99.8 % of experimental values.

With the change of scale just mentioned, we can combine all the data together in
a single figure (Fig. 11.21, which includes a few additional data points such as from
Huang et al. [78]). Without the change of scale it would appear that the single choice
of length scale would suffice to explain experiments conducted over 10 orders of
magnitude of length scales, although the predicted variability at small length scales
would be larger than observed. But a change of length scales is necessary, while
the different values at the greatly different length scales are at least in accord with
what theory predicts. One finds that the asymptotic result from percolation theory—
that the dispersivity is roughly linear with length scale—is still consistent with both
experiment and Gelhar et al.’s [50] rule of thumb.

11.5 Typical System Crossing Times and the Scaling of Solute
Velocities

In the following discussion the mean solute velocity plays an important role. In
principle, the tails of the derived arrival time distributions may be so long that a
mean arrival time does not exist. But we have defined the mean solute velocity, 〈u〉,
in terms of the spatial moments of the distribution, which are guaranteed to exist.
Thus 〈u〉 = 〈x〉/t , where t is an input parameter. Similarly, in order to find a typical
system crossing time, we have inverted the relationship 〈x(t)〉 to find how a travel
time, t (〈x〉), scales with the distance of travel. Here we compare the latter quantity
with results from experiments performed in the late 1970s. We also compare the
scaling of the mean solute velocity with time or transport distance with results for
the scaling of chemical reaction rates with the same variables. We use the RS model
throughout, with realistic variability in the fractal dimension of the pore space. Al-
though we find a large variability in the dispersivity at smaller time scales, there
is much less variability in the scaling of the mean transport distance with time. At
least at small times, before the behavior of the dispersivity approaches its universal
behavior, the time t that is required for solutes to traverse a distance x is dominated
by the scaling factor (x/L)Db . But at time scales large enough for the dispersivity
to approach its universal behavior, the scaling of time and length changes, as will
be seen in comparisons with experiment. In CTRW formalism (see the Appendix),
if the tail of the distribution of arrival times is described by the power law t−(1+α),
then the scaling of the transit time is given by (x/L)1/α . Thus we expect, to a fairly
good approximation, that α = 1/Db. However, the discrepancies between the two
extracted values of α can be considerable.

11.5.1 Comparison with Typical System Crossing Times in
Transient Photoconductivity Experiments

Studies of the transient photoconductivity of amorphous semiconductors and poly-
mers in the 1970’s revealed non-Gaussian transport. This behavior showed up both
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Fig. 11.22 From Bos et al.
[22], referring to earlier work
of Pfister and Griffiths. The
former authors showed that
the measurements of the
exponent of the tail of the
distribution of arrival times
were consistent with α near
0.6, independent of
temperature. We have added
the predicted value of 1/Db
for comparison

in long-tailed power-law distributions and in non-trivial behavior of the typical sys-
tem crossing time. The experiments are described in a review article in Physics
Today [151].

Theory to explain this transport was mostly based on the continuous time random
walk (CTRW), which provided a context to relate the parameters from the different
experimental conditions. The observed transport was sometimes compatible with
Gaussian statistics at high temperatures (compared to, e.g., bandgaps). But mostly
it was concluded that the transport was “dispersive,” or had power-law tails. In fact
the claim was made [126, 128]) that the value of α as obtained from the decay of the
photocurrent was a function of temperature. But a second study, on polyvinyl car-
bazole [128], seemed to show a strong temperature dependence of α, and reported
different short time and long time values of α; according to theory they should have
been the same. Later experiments [22] on the same material contradicted both as-
pects of the Pfister and Griffiths study (here shown in Fig. 11.22). Thus the “final”
value of α, initially reported as about 0.25 in the low temperature limit, was not
confirmed by the later experiments (“this work” in Fig. 11.22), in which both early
and late measurements returned about the same value of α, and in which this value
was approximately temperature-independent. Our predicted value of approximately
1/Db = 1/1.64 = 0.61, shown as a horizontal line, appears to be in accord with the



11.5 Typical System Crossing Times and the Scaling of Solute Velocities 371

Fig. 11.23 Comparison of
the length dependence of the
typical arrival time for
polyvinyl chloride from Bos
et al. [22] with theoretical
prediction. The theoretical
curve simply scaled t as
distance to a power equal to
the fractal dimensionality of
the backbone

later experimental results from Bos et al. [22]. The later work also reported that 78
room temperature measurements of α returned early-time values of 0.61± 0.08.

Note that one can also check directly (Fig. 11.23) to see whether the data from
Bos et al. [22] for the time-length scaling agree with theory, which implies that
t ≈ x1/α = xDb = x1.64. We digitized their Fig. 7, and chose the value of Db for
two-dimensional random percolation. Specifically, we used t = 0.1x1.6432, where
the numerical constant 0.1 is an adjustable parameter, and found good agreement.

Overall, values of α that were reported tended to cluster around 0.6 and 0.5.
These values are slightly confusing when considered directly, but it is interesting
that they are almost identical to the scaling exponents reported for silicate weath-
ering rates discussed below (Sect. 11.6). When, instead, we collected the values of
exponents that describe the scaling of system transit time with system length at low
temperatures, the results were striking (Table 11.4).

In polymer systems (shown in bold) the observed power tends to be near 1.64 =
Db for 2D random percolation, while in the remaining systems, the power is near
1.87 = Db for 3D random percolation. For polymers, the hopping conduction is
perpendicular to the chains, and is thus restricted to two dimensions, so we should
expect values near 1.64. But in amorphous selenium or silicon, we should expect
the hopping transport to be fully 3D, giving values near 1.87.

The variability in the power of t (x) that is observed is considerable, however,
and needs to be addressed. We suspect that it is due to finite-size and variable dis-
order, which may confound predictions from ideal scaling arguments. But it might
instead be due to the relevance of non-universal exponents of conduction [144],
or to variability in Db. Such variability can arise from e.g., long-range correlations
[85]. Since we generated, in the same theoretical framework for which the hydraulic
conductivity followed non-universal exponents from percolation theory, the satura-
tion dependence of both t0 and the full W(t), and since we relate this distribution
to the universal exponents of percolation theory, our research does not appear to
support the relevance of non-universal exponents of conduction to dispersion. Our
perspective here is that variability in time-length scaling is a product of the variable
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Table 11.4 Time-length scaling exponents in dispersive transport

Power (lowest temperatures) Reference Material

1.64 Bos et al. [22] Polyvinyl carbazole (78 room
temperature measurements)

1.67 Pfister and Griffiths [128] Carbazole polymers

1.67 Bos et al. [22] Polyvinyl carbazole

1.81 (next-lowest
temperature)

Pfister [126] a-Se

1.96 (lowest temperature) Pfister [126] a-Se

1.82 Pfister and Scher [127] Not given

2.0 Tiedje [167] a-Si:H

2.2 Pfister [126] (as given in Scher
and Montroll [150])

As2Se3

effects of disorder in systems small enough that the region of universal behavior is
not reached, and we show next that this variability is exactly what is seen in experi-
ments.

We now show graphically that travel time typically scales with length accord-
ing to a power equal to, or a little larger than, Db, depending on the width of the
distribution of permeability values. We give a range of values because the depen-
dence of the power on disorder is not monotonic; it contains a maximum, but it
does not drop below Db. The predicted variability in the scaling exponent is 5 % in
two dimensions, with values ranging from 1.64 to 1.72, but 21 % in three dimen-
sions, with values from 1.87 to 2.26 (Fig. 11.24). The range of these values could
be increased somewhat if a wider range of system lengths were considered, but the
scaling also gradually deviates from a power law (Fig. 11.25). The length at which
this deviation occurs corresponds to the length scale in groundwater flow where the
observed dispersivities trend rapidly upward toward a universal value, many orders
of magnitude longer than the smallest relevant system sizes. The observed variabil-
ity is 2 % in two dimensions, but 21 % in three dimensions. Thus our predictions
account for the widely differing ranges of exponents observed in two and three di-
mensions.

We comment here that there is no reason why percolation concepts cannot be ap-
plied to problems of transport in amorphous semiconductors and polymers. In fact,
as noted earlier in this book, this is where the applications were first made. However,
there is a good reason why the applications described here were not originally at-
tempted for transient photocurrents; in our work we have always defined a medium
with local conductance distributions. But in non-equilibrium problems such as the
description of the transient photocurrent, the site occupation probabilities by elec-
trons evolve over time as the energy available to the hopping electrons diminishes.
With non-equilibrium values of occupation probabilities that are changing in time,
it is not strictly valid to define a random impedance network, since the resistance
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Fig. 11.24 Predicted
variation in the scaling of t

with x for several values of
the pore-space distribution
function

Fig. 11.25 Demonstration
that the scaling of the typical
arrival time with system
length given by a simple
power law is only valid over a
certain range of system
lengths
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values would change with the movement of the electrons. Further, until the work of
Lee et al. [93] (motivated by petroleum research), relating the scaling of the time
exponent to the fractal dimensionality of the backbone, there was little chance to
draw the conclusion regarding the relevance of percolation. Thus it can be seen that
the field of solid-state physics benefits by the application of percolation concepts to
conservative groundwater transport problems, as it was in that context that an ex-
plicit and detailed representation for the distribution of arrival times was developed.
So it is a logical further step to test whether the results derived for near-equilibrium
processes also fit with experiments on systems far from equilibrium, whether of
transient photocurrents, or for reactive solute transport. We find that they do in both
cases.

11.5.2 Comparison with the Scaling of Chemical Reaction Rates

Data for the scaling of chemical reaction rates with time and space are considered
here. These reactions include experimental investigations of uranium dissolution in
Hanford sediments, as well as the weathering of silicate minerals in situ. Uranium is
an example of a groundwater constituent with significant potential implications for
human health. The broader importance of understanding silicate weathering may be
much greater:

Slow dissolution of minerals on land and formation of biogenic calcite in the oceans also
maintains atmospheric CO2 concentrations and therefore plays an important role in main-
taining global temperatures at levels optimal for the presence of liquid water [18]. In Earth’s
past, major changes in rock weathering have coincided with periods of mass extinction
[2, 157] and reorganization of global biogeochemical cycles [100, 133, 170]

Moreover, the weathering of silicate minerals controls rates of soil formation and
surface denudation on the earth’s surface [4, 41]. For example, it is known that phys-
ical denudation rates are typically proportional to chemical weathering rates [41].
With the additional hypotheses that the predicted transport distance is essentially
an equilibration distance, and that this distance can be identified as a weathering
depth (e.g., [95]), we can also generate typical landscape denudation rates, and the
approximate time scale over which a complete geomorphic reworking of the earth’s
surface occurs is believed to occur [4].

Weathering reactions take place primarily along phase interfaces in porous me-
dia. Such processes are quite complex, requiring, in principle, simultaneous treat-
ment of the chemical equilibration of multiple chemical species, diffusive and ad-
vective transport of reagents and reaction products, and changes in the nature of the
surface. In view of the complexity of the problem, most approaches simplify some
inputs and focus on others [24, 40, 94, 132]. Our approach emphasizes the role of
solute transport in limiting reaction rates. Without reagents, the reactions do not
occur; without removal of the weathering products, reactions quickly reach equilib-
rium and cease. We propose that the origin of the observed scaling behavior of the
reaction rates is due to a time- (and space-) dependent solute velocity, and to solute
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advection rather than diffusion. Thus, whenever chemical reactions are transport-
limited, our predicted solute velocity dependence should give the scaling behavior
of chemical reaction rates. In fact, this conclusion was generated using hindsight;
that diffusion plays little or no role in the reaction rate scaling was not something
that we could have assumed a priori. Rather, it is a conclusion that results from use
of Occam’s razor.

In a seminal paper, White and Brantley [174] showed that the scaling of reaction
rates, R, in lab experiments yields a different time dependence than do field scale
observations. Laboratory experiments generate R ≈ R0(t/t0)

−p with p = 0.51, but
at the longer time scales extracted from field studies, p ≈ 0.7. Over the entire 10
orders of magnitude of time scales, from hours to six million years, p is 0.63. Here
R0 is the initial reaction rate at t = t0. The change in slope makes it impossible to
predict long-term field reaction rates accurately from shorter term lab experiments
without a reliable theory. We will see that this is exactly the behavior that our theory
predicts.

The initial time dependence of R is consistent with assuming that weathering
rates are diffusion-limited, an appealing assumption. This is easily seen using the
relationship x2/t = const, and then solving for a solute velocity dx/dt as a function
of time, u ≈ t−0.5. However, diffusion control would require that the spatial scaling
of the solute velocity be u ≈ x−1, whereas the observed dependence [100] is actually
R ≈ x−0.9, a small but potentially important distinction. More crucially, diffusion
cannot account for the change to a steeper decline of R at later times; thus other
influences, such as changes in the surface are often invoked. But if advective solute
transport is the limiting factor, then both the cross-over to a steeper slope and the
observed dependence on length are automatically generated within our theoretical
construction. In fact, percolation theoretical calculations of the solute velocities give
the observed scaling of reaction rates with length scales. Finally, percolation theory
appears also to generate the observed increase in weathering rates with the scale of
the measurement.

As a first example, in Fig. 11.26 we reproduce the dependence of reaction rates on
“residence time” from [100]. Maher’s designations “transport controlled” and “satu-
ration controlled” divide the graph into two regions at 1 yr, according to the theoret-
ical curve she puts through the data points. We compare these observations with the
predicted scaling of solute velocity with time. Our predicted scaling of solute veloc-
ities, based on a mean solute velocity d〈x〉/dt , and one choice of fluid velocity and
fundamental reaction rate, does not distinguish between regimes. We assumed 3D
random percolation (valid for three-dimensional flow under saturated conditions)
and the pore-space fractal dimensionality D = 2.95. The correspondence is suffi-
ciently good (Fig. 11.26) to suggest that the distinction is not necessary.

As seen from examination of Fig. 11.26 at large time scales, the predicted mean
solute velocity is a non-trivial function of solute transport distance and transport
time, and is known precisely only from the numerical solutions outlined in this
chapter. The result can be written

u(t) = L

t0
f

(
t

t0

)

≈ u0

(
t

t0

) 1−Db
Db

(11.34)
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Fig. 11.26 Solute velocity as
a function of time used as a
proxy for the time
dependence of reaction rates
in porous media. This shows
Maher’s distinction between
“Transport” and “Saturation”
control is unnecessary, as the
same function appears to
unite both regimes

where it is the form of f that was determined numerically. The approximate equality
in Eq. (11.34) is relevant at small time scales, similar to the case of the scaling
of system crossing times above. Since reactions on mineral surfaces at the particle
scale are the subject here, L must refer to a pore size, while t0 refers to the time scale
required for water (and thus solute) to traverse the pore. Because the upscaled solute
velocity diminishes with scale, however, the equality of fluid and solute velocities
holds only at the scale of a single pore, where u0 ≡ L/t0.

Writing the same relationship for the scaling of the reaction rates leads to,

R(t) = R0

u′
L

t0
f (t0) ≈ R0

u′
L

t0

(
t

t0

) 1−Db
Db

(11.35)

where u′ is a required scale factor. u′ might be proportional to u0, but it may in-
stead be proportional to a different ratio of a length to time scale. If we assume that
u′ is proportional to u0, the number of parameters is reduced, but it is more dif-
ficult to explain the experimentally determined [100] proportionality of R to fluid
velocity, u0 = L/t0, in the transport-limited regime, which otherwise “falls out” of
Eq. (11.35). The dependence of R0 on temperature is apparently Arrhenius in form
[113]. A drawback of Eq. (10.35) is that the approximate equality holds for spe-
cific ranges of time. It would obviously be advantageous to determine R0 and the
prefactor from experiments.

One can also represent the distance dependence for reaction rates in the following
approximation, consistent with the approximate result in Eq. (11.34) for the time
dependence:

R(x) ∝ LDb

t0Db
x1−Db (11.36)

When Eq. (11.36) is valid (which we shall see is only at shorter length scales),
reaction rates decay according to the power 1 − Db = −0.87 ≈ −0.9 (in 3D), the
dependence seen by Maher [100].
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Table 11.5 Comparison of scaling of solute velocities with reaction rates

Observationa Theory

Mineral Time-scale (years) Slope D Early slope Full slope

Fresh Panola Plagioclase 6 × 100 −0.51 1.50 −0.52 −0.61

Plagioclase 3 × 106 −0.566 2.50 −0.49 −0.58

K-Feldspar 3 × 106 −0.647 2.90 −0.48 −0.62

Hornblende 3 × 106 −0.623 2.95 −0.47 −0.63

Biotite 5 × 105 −0.603

Average −0.61b −0.49 −0.61

aObservations are taken from White and Brantley [174]
bThe average of underlined values

Weathering Rates; Field Data

White and Brantley [174] reported that fresh surfaces of Panola plagioclase (plagio-
clase being a prominent mineral in continental crustal material) weathered at rates
that decayed as the −0.51 power of the time. However, these same authors reported
that weathering rates in situ, inferred over much longer periods of time (up to about
6 Myr) decayed as the −0.63 power of the time. Our transport theory applied to
the RS model is consistent with a solute velocity that, at shorter time scales (up to
about 5 decades of time), scales with time according to an exponent whose value lies
somewhere between −0.47 and −0.51, depending on the fractal dimension of the
pore space (Figs. 11.27 and 11.28). For longer time scales (some 10 decades of time)
the scaling exponent changes to a value between −0.61 and −0.63, as shown in the
same figures. The values of D chosen for this comparison are between D = 1.5
(Fig. 11.28) and D = 2.95 (Fig. 11.27), respectively representing quite homoge-
neous and rather heterogeneous media, although the predictions are little changed
by this large difference in D. Thus we account for the reaction rate scaling, regard-
less whether the medium is homogeneous or heterogeneous. The specific experi-
mental and theoretical exponents are given in Table 11.5. The relative consistency
of the exponents across mineral types suggests a physical control, especially since
the variability in the experimental values of the exponents, −0.57 to −0.65, differs
little from the variability traceable to differences in the medium, −0.58 to −0.63.

The variability in slope in Table 11.5 was generated from a range of D values
1.5 ≤ D ≤ 2.95, approximately the same used for the system crossing time for elec-
tron transport (1 ≤ D ≤ 2.95), and the observed range in solute dispersivity values.
Therefore the same parameters of the same input functions describe the observed
variability in time-length scaling in dispersive transport, dispersivity as a function
of travel distance, and (as will be shown) reaction rate scaling as a function of time
or space. Under conditions of typical porosity, such a range in D corresponds to a
range in permeability spreads of from about an order of magnitude to upwards of
5 orders of magnitude. This variation in heterogeneity in permeability describes a
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Fig. 11.27 Solute velocity as
a function of time for media
with a wide range of pore
sizes (D = 2.95). (a) The
extracted exponent for the
first four orders of magnitude
of time; (b) a steeper slope
that would be consistent with
nine orders of magnitude of
time variation

rather wide range of natural media, so it is a reasonable choice. But in practice, we
find that the results from D = 2.95 describe most of the individual experimental
data we analyze.

Although it is interesting to extract powers from theory and compare them with
experiment, it is much more interesting to compare theoretical and experimental de-
pendences directly. This is done in the following figures. Note that while the theory
can provide absolute references to the vertical scale (pore-scale reaction rate) and
to the horizontal scale (pore crossing time-scale), these choices typically require
more information than is available, particularly for field measurements of weather-
ing rates. Thus in most cases we look for horizontal and vertical scale factors that
produce the best fit.

To construct Fig. 11.29, we took the fundamental time unit in the calculations
to be years, took the ratio of the measured R to its maximum value (approximately
equal to the ratio R/R0), and adjusted the vertical scale of the calculated u to fall
on the experimental curve of the fresh Panola plagioclase, thus interpreting the ver-
tical axis as a solute velocity (with unknown units). We will find that these units are
roughly tens of microns per second. The reaction rates were obtained from White
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Fig. 11.28 Same as
Fig. 11.27, except for a
medium with a narrow range
of pore sizes (D = 1.5)

and Brantley’s [174] Tables 4–7, except for FPP (fresh Panola Plagioclase) which
was digitized from their Fig. 3. White and Brantley also plotted the FPP sequence
simultaneously with the field silicate weathering data, with exactly the same results
as our Fig. 11.29. The basalt rind weathering data of Sak et al. [146] is plotted on the
same graph. The effective weathering rates in the field over time scales of several
million years are about an order of magnitude lower than a value extrapolated from
the fresh Panola plagioclase experiments (FPP). It can be seen that our predictions
track the trends of the data, but with our assumed range of D values (D = 1.5 to
D = 2.95) we do not generate the variability. Therefore, the observed variability in
reaction rates is unlikely to be a result of variability in medium physical character-
istics or morphology; rather it is likely due to variability in other factors, such as R0
and t0. Using some results of other authors we consider this issue more closely.

Some of the scatter is undoubtedly due to the variability in fluid flow rates, since
reaction rates are shown by Maher [100] (her Figs. 4 and 5) to be proportional to
flow rates in the transport limited regime (as she asserts, for flow rates greater than
16 m/yr = 0.5 μ/s). At the other extreme, Molin et al. [109] assert that transport
control is expected only for flow velocities less than 100 μ/s. This >2 orders of
magnitude range of velocities for which reaction rates are considered to be transport
limited appears to introduce a roughly two order of magnitude variability in reaction
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Fig. 11.29 Comparison of all the data, from both experiments (FPP = Fresh Panola Plagioclase),
and field measurements of weathering reaction rates. We have again used the mean solute velocity
function as a proxy for the reaction rate. Although we do not give units for the velocity, the FPP ex-
periments are consistent with an initial solute velocity equal to the pore-scale fluid velocity, which
is about 15 μm/s, meaning that the zero in the vertical (logarithmic) scale corresponds to a few
tens of micrometers per second. The vertical scale for the reaction rates would be roughly normal-
ized to the rate at the scale of a single pore given instant mixing and transport of the reagents and
products. This comparison used exponents from 3D random percolation, appropriate for saturated
conditions. Two values of D were chosen, corresponding to wide and narrow ranges of pore sizes

rates that is due solely to variability in flow rates. Although we do not know the field
flow rates, we can calculate the flow rate (and fundamental time scale) associated
with the experiments on the FPP by taking the experimental data in [174] and using
that result to estimate error bars on our predictions. In the process we find that the
fundamental time scale of FPP experiments is in general accord with our theoretical
predictions as well.

White and Brantley [174] crushed 750 g of granite and placed it in a column
100 cm long and 2.4 cm in diameter. Using a density of granite of 2.7 g/cm3, this
gives porosity of about 0.4. At the reported volume flux of 10 ml/hr through this
column, one can obtain a pore-scale velocity of about 15 μm/s by using a mass-
conservation relationship between flux, area, and velocity, modified by the porosity.
Given [174] that the particle sizes range from 0.25 mm to 0.85 mm, one can estimate
a typical pore size as 0.3 times the typical particle size [60], about 0.15 mm. So a
typical pore crossing time is about 150 μm/15 μm/s = 10 s. With a column length
of 100 cm, water encounters between 1000/0.85 = 1176 and 1000/0.25 = 4000
particles along the length of the core, and a similar number of pores. Core solute
transit times of between (10 s) (1176)1.87 = 0.17 yr and (10 s) (4000)1.87 = 1.7 yr
would be expected, comparable to the range of time values in the experiment [174]
that extended from 0.19 yr to 6.2 yr.

The pore-scale flow rate consistent with our graph (calculated above from the
laboratory experiments of White and Brantley), 15 μ/s, is about a factor 30 greater
than Maher’s calculated minimum value; but almost an order of magnitude less than
the maximum value given by Molin et al. [109]. Navarre-Sitchler and Brantley [113]
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Fig. 11.30 Introduction of
approximate error bars
associated with the
uncertainty in the pore-scale
fluid velocity for the range of
fluid velocities that is
associated with both transport
controlled reaction rates
[95, 100] and a
proportionality of the reaction
rates to the fluid velocity,
according to Maher [100]

assert that weathering rates at a given spatial scale tend to vary by no more than two
orders of magnitude when the temperature variability is controlled for. Thus one
could estimate a spread of roughly two orders of magnitude centered around the
predicted curve as due to variations in velocity, and attribute the remaining uncer-
tainty to variability in temperature. Figure 11.30 shows the uncertainty introduced
by a proportionality of reaction rates to the fluid flow rate using the bounding flow
rate values quoted from Maher [100] and Molin et al. [109]. However, if u′ is not
proportional to u0, our Eq. (11.30) yields a rate prefactor proportional to the fluid
velocity, and an additional factor of t

(1−Db)/Db
0 . Using Db = 1.87 in 3D leads to a

reaction rate proportional only to about the square root of u0, which would halve
the range of R values explained by a variability in u0, leaving up to one order
of magnitude variability accounted for by neither temperature nor flow rate vari-
ations.

The data over much of White and Brantley’s range show a scatter of one to two
orders of magnitude, but at several points, most noticeably at about 10,000 years,
scatter exceeds 4 orders of magnitude. From the discussion of Navarre-Sitchler and
Brantley [113], most of the remainder of the scatter is probably due to temperature
variability. Such variability in temperature would likely be accentuated at around 10
kyear associated with the rapid retreat of the northern continental ice sheets, along
whose boundaries most of the measurements relevant for that time frame were made
(see Tables 4–7 of White and Brantley [174]).

Despite the large scatter in the data, our theory reproduces the results obtained
from the statistical analysis of the observed reactions rates. The observed scatter
is approximately what one would expect from weathering rates that are mostly
transport-limited. We therefore believe that our results imply that the temporal scal-
ing of reaction rates is due to the time-dependent solute velocity as derived in the
percolation theoretical construction.

For additional confirmation, in Maher’s [100] Fig. 7 it is shown that observed
reaction rates decline approximately as the soil thickness raised to the −0.9 power
(for thicknesses of roughly 10 cm to 1 m), as one would expect from using the
thickness of the soil cover as a proxy for the transport distance, x. Mean solute
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Fig. 11.31 Spatial scaling of reaction rates compared with the spatial scaling of the fluid velocity.
In both experiments and field data we were able to normalize to the initial value of the reaction rate,
at least approximately. However, values of x0 for the lab and field data could not be established
with certainty. Since the lab data were collected for intraparticle distances, and the field data for
interparticle distances, we chose a ratio of x0 values equal to 103. Had we chosen the equally
plausible value 102, the field data points would have shifted to the left one unit, making the data
continuous with the predictions

velocities are proportional to x/t ≈ x/xDb from Eq. (11.34), giving u ≈ x−0.87.
This prediction agrees well with Maher’s experimental result. Here our transport
distance x corresponds to the length scale known as the weathering front advance
in papers on weathering rind formation (e.g., [113, 114, 146]).

We compared data from Maher’s [100] Fig. 7 with theory and found reasonable
agreement. But since the range of field length scales investigated is quite small, the
conclusion might be sensitive to small changes in the actual length or time scales
investigated, suggesting that we should extend the range of length scales investi-
gated to include, e.g., laboratory measurements. However, an accurate comparison
of this sort requires putting both results on the same plot (Fig. 11.31), meaning that
it is important to evaluate the scale constants x0 and R0. We normalized the soil
weathering rates to the value quoted in [100], but we did not have an exact value
for x0. Then we used experimental data at laboratory (intraparticle) length scales
[124]. Peng et al. [124] measured uranium and copper concentrations as functions
of depth from the surface of an individual basaltic clast using laser ablation. The
depths ranged from 0.6 μm to 29 μm. They reported that the copper and uranium
concentrations were highly correlated, so we plotted them together. To this purpose
we had to normalize both the copper and the uranium depths and rates to their initial
values; those two data series are nearly indistinguishable. Since the requisite value
of x0 would refer to intraparticle flow (very short penetration depths), the same x0
could not be appropriate for the data we digitized from [100]. Those data refer to
interparticle flow through soils over distances up to a meter with pore sizes roughly
a particle radius. Thus the ratio of the two length scales we need is the ratio of a
particle diameter to that describing the scale of the flow variability within the par-
ticle. We used a ratio x0(interparticle)/x0(intraparticle) = 1 mm/1 μm = 103, but
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this argument is only qualitative. If we had used an order of magnitude smaller ra-
tio of fundamental distances, the two data sequences would have followed the same
curve; however, we have no reason to prefer that value over the one we did use. Note
that the change at larger distances to a more negative slope of the weathering rate as
a function of distance should have the tendency to limit depths of weathering within
bedrock, unless physical processes are effective at removing the surface.

Now we make some comparisons of actual values of time and length scales re-
lated to our choice of axes in Figs. 11.29–11.31. Consider gravity flow (a condition
also simulated by White and Brantley [174] for the Panola plagioclase weather-
ing) with a saturated hydraulic conductivity value of 10−4 cm/s (the median or-
der of magnitude for crustal materials; [4]). This combination would be consistent
with a single pore flow rate of about 1 μm/s, within the fluid velocity limits sug-
gested by Maher [100] and Molin et al. [109] as bounding the transport-limited
regime.

Using our analytical results for the solute velocity, proportional to t (1−Db)/Db , a
relevant solute transport distance proportional to t1/Db (compare again with weath-
ering front advance) of 1 μm at 1 s would translate to about 0.5 cm at 1 yr (an order
of magnitude smaller than fluid and solute velocities in the fresh Panola plagioclase
experiments of White and Brantley [174], to about 4 m at 100 kyr (compare Ma-
her’s [100] model results yielding 250 kyr for 2 m), and about 20 m at 1.5 million
years. However, the nearly one order of magnitude decrease in effective solute ve-
locity, shown in Fig. 11.28 as occurring at time scales between about 1 kyr and
1 Myr, would typically reduce this weathered depth to several meters at 1.5 Myr,
and to about half a meter at 100 kyear. This latter value would be consistent with
the Maher [100] model results, and also improve agreement with the results of Lin
et al. [95], in which total solute transport distances of up to about a decimeter are
associated with time scales of around 100 kyear. By the commonly observed equiv-
alence between chemical weathering depths and physical denudation thicknesses
[41], weathering rates in meters per million years lead to similar denudation rates
for weathering limited conditions, as obtained through cosmogenic and other meth-
ods of dating [4]. Accordingly, for weathering rate limited conditions, grain size
transport distances at 1 s can be linked to common landscape surface losses on the
order of meters to tens of meters over a time scale roughly equal to the geomorphic
age of the earth’s surface, 5 Myr [4].

Experiments

Now consider the dependence of uranium reaction rates on time scales from various
Hanford experiments. An interesting dependence of U(VI) desorption concentra-
tions on time was obtained by Liu et al. [97]. We digitized the data from Figs. 1–2
of that work. As with the weathering rates above, we assume that the observed con-
centrations are proportional to the solute velocity. The time span was much shorter
than the data summarized by White and Brantley [174], however, covering only
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Fig. 11.32 Temporal scaling of reaction rates from the US DOE Hanford site compared with the
same solute velocity function in Fig. 11.29 (3D random percolation, D = 2.95), but with a different
value of the fundamental time scale, appropriate for much higher fluid velocities as well as higher
reaction rates. The data appear to show the change of slope that can only be inferred from field
data in Fig. 11.29

minutes to hours. This data sequence appears to show (Fig. 11.32) the same kind
of cross-over to a steeper slope as seen in White and Brantley’s [174] data. This is
generally consistent with the value of the controlling rate constant, 10−4.29, taken
from Table 1 of Liu et al. [97], which is five to six orders of magnitude greater than
the largest lab values reported by White and Brantley [174]. Consequently, experi-
mental conditions with much greater fluid velocities would still allow for transport-
limited reaction rates. If we accordingly change the time axis scale from Fig. 11.29
by a factor of about 105, and plot the observed uranium concentrations as a func-
tion of time we produce Fig. 11.32. Whereas the weathering rate observations in
Fig. 11.29 cover only initial and final slopes, Fig. 11.32 shows the behavior at the
predicted slope cross-over. The agreement is less conclusive than we would want,
given that we had to use adjustable parameters for the fundamental time and reaction
rate scales—a weakness which is reduced in the comparison with the data of Du et
al. [42] below. For all the uranium experiment modeling we used the RS model with
D = 2.95.

In Figs. 11.33–11.35, we examine data from Liu et al. [97], investigating uranium
desorption from very coarse sediments. In order to make use of all the breakthrough
curves, we normalized the time and concentration values in each to their smallest
and largest values, respectively, and plotted the data for later times. We found that
the experimental data for the short column could not be fitted to 3D random percola-
tion; the appropriate percolation exponents were those from 2D invasion percolation
(Fig. 11.33). This can be understood by appeal to wall flow as the dominant flow
mechanism. In very coarse Hanford sediments it is known that flow along the wall
of a sediment core can dominate due to the particularly large pore spaces formed
along the boundary between the sediment and the wall ([30]; see also discussion of
this experiment in [54]).
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Fig. 11.33 Temporal scaling
of reaction rates in a short
column of coarse sediments
from the US DOE Hanford
site compared with 2D
invasion percolation scaling
(D = 2.95) of the solute
velocity. Similarly to the
experiments of the solute
arrival time distribution from
Cherrey, our interpretation
invokes wall flow as an
explanation for the relevance
of 2D invasion percolation
exponents

Fig. 11.34 Temporal scaling
of reaction rates in a long
column of coarse sediments
from the US DOE Hanford
site compared with 3D
random percolation and
D = 2.95. Although the
sediments are the same in
Fig. 11.34 as in Fig. 11.33, in
this latter case the experiment
was performed in a long
column

Fig. 11.35 Slopes of reaction
rate scaling from the previous
two plots. The extracted
values, −0.46, and −0.17,
compare favorably with the
predicted values from
Table 11.5 of −0.47 and
−0.18, respectively



386 11 Properties Based on Tortuosity

Table 11.6 Analytical results related to the scaling of solute transport time with distance

Percolation class Parameter

Db u(x) u(t) t (x) x(t)

2d Random 1.64 x−0.64 t−0.39 x1.64 t0.61

3d Random 1.87 x−0.87 t−0.47 x1.87 t0.53

2d Invasion 1.22 x−0.22 t−0.18 x1.22 t0.82

3d Invasion 1.46 x−0.46 t−0.32 x1.46 t0.68

Table 11.7 Calculated fluid flow and particle characteristics for Du et al. [42] experiments

Diameter, μm Number of
particles in
0.5 g

Mean distance
between
particles, μm

Flow time
between
particles, s

Column
crossing
time, hrLower

bound
Upper
bound

Geometric
mean

20 75 38.7 6,202,812 117 28 (3.6) 177

75 500 193.6 49,622 586 141 (73) 43.8

500 2000 1000.0 360 3028 727 (1573) 10.5

20 2000 200.0 45,044 606 145 (78) 42.3

2000 4000 2828.4 16 8563 2055 (11000) 4.2

Data from the long column, however, are consistent with the predictions from 3D
random percolation (Fig. 11.34). In Fig. 11.35 we show the slopes of straight lines
fitted to the data for both the short and the long column. The short column returns
the slope 0.17, while the long column returns the slope 0.46, comparing nicely with
the predicted values of 0.18 and 0.47, respectively (see Table 11.6). These analytical
values are approximately valid for t values smaller than at the slope break. Again
we used the RS model with D = 2.95.

Compare the value 0.47, the predicted scaling exponent for u(t) in 3D random
percolation (at short time scales), with the theoretical early-time slopes from nu-
merical simulations that range between 0.47 (for large heterogeneity) to 0.52 (small
heterogeneity) (Table 11.5). As usual, the details of the medium introduce some
variability into the actual values of the exponents.

Next we consider data for uranium elution from Du et al. [42]. These authors
report experiments on uranium dissolution, a dependence of uranium concentration
that diminishes according to a power of the transport time. The data were collected
from elution experiments for five different media with differing particle sizes. In
Table 11.7 we use their particle sizes and calculated particle numbers to calculate
mean particle separations and the flow time (neglecting effects of stirring). The ex-
periment was performed in a stirred “flow cell” 25 mm tall with 0.5 g of particles in
10 ml of liquid—in other words it was a suspension, not a grain-supported medium.
The mean distance between the particles was calculated by assuming the particles
were equidistantly dispersed. The static flow time along across a particle was only
5 s for the first entry, a factor 5 smaller than the inter-particle flow time.
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Fig. 11.36 Uranium elution data from Du et al. [42], compared with the same solute velocity
function from Fig. 11.29. The elution data were taken separately for five different media with
different particle sizes. The time of the first slope cross-over was adjusted to match experiment, and
the vertical scale was chosen for best fit, but the values of the slopes in all three time ranges were
fixed, and the position of the second slope cross-over was fixed by the first. Thus, four different
parameters in approximate agreement with experiment were generated by the choice of two fitting
parameters for each of the three curves shown. For the largest particle size class, the flow cell
contained fewer than 10 particles, so the results of our statistically based theory for interparticle
transport could not be applied

The data are plotted and compared with theory in Fig. 11.36. Each theory line
uses the solute velocity calculated for D = 2.95, with 3D flow under saturated con-
ditions (random percolation). The difference in the three predictions lies solely in
the choice of the t0 and u0 values, which for three different curves can involve as
many as six unknown parameters. Since the fluid velocity u0 was intended to be the
same in all 3 experiments, we used the same value for each, reducing the number of
possible adjustable parameter values from six to four. The fundamental time scales
used in our numerical calculations, were given in the sixth column of the table (in
parentheses), alongside the flow time between particles estimated from the values
of their separation and the fluid flow velocity. Note that in most cases, our assumed
fundamental time scale is within a factor 2 of the calculated value. Calculation of
the typical column traversal time for solutes is in column 7, which generates values
in the tens of hours from the product of column 6 and the factor (25 mm/L)1.87,
where L is a particle separation. These values are, with the exception of the first and
last entries, near the middle of the experimental values in Fig. 11.36.

The comparison demonstrates that the general behavior of the solute transport in
the three columns with smaller grain sizes is well approximated using our calcula-
tion. Adjusting two parameters was sufficient to yield three different slope values as
well as two cross-over times in each case. For the largest grain sizes (2 to 8 mm) the
small number of potential solute paths accentuates fluctuations and renders predic-
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Fig. 11.37 Temporal scaling
of iron mobilization for US
DOE Hanford site sediments
compared with the same
solute velocity function as in
Figs. 11.26, 11.29, 11.30,
11.31, 11.32, 11.34,
and 11.36

tions based on mean solute velocities less useful. Again we used the RS model with
D = 2.95.

Because the interparticle fluid was stirred, Du et al. [42] interpreted their scale-
dependence in terms of diffusion-limited transport within the particles. This inter-
pretation is in accord with the understanding of Noniel et al. [120], whose stirred
experiments did not show evidence of transport limited behavior at larger length
scales. Consequently, these authors interpreted the results in terms of intra-particle
diffusion near the percolation threshold. We argue that the time dependence of the
solute transport over lengths equivalent to thousands of particle separations (as in
the case of the smallest particles) does not reflect the dynamics of transport within
the particles, but rather, the tortuosity of the paths through the porous medium as a
whole. Consider also the data for the medium composed of the largest particles. In
this one case the experimental length scales do not significantly exceed the diameter
of the largest particle, meaning that intraparticle processes can dominate. Here the
power observed is nearly −0.5, typical of the early slope regime of our predicted
solute velocity curve, but also with pure diffusion which, in the case of the largest
particles, could be relevant for the (mostly) intraparticle transport. These reasons, as
well as the exceptional agreement with experiment in the cases of the three media
with the smallest particles, lead us to favor our interpretation.

Finally we consider the experiments of Zhong et al. [181]. These authors obtain
a remobilization rate that decays as t−0.53 (R2 = 0.89) or t−0.42 (R2 = 0.61). This
dependence on time could accord with either diffusion as a limiting mechanism
(exponent −0.5), or with our results for transport-limited reaction rates. We compare
their remobilization rate with our solute velocity predictions in Fig. 11.37 and find
reasonably good agreement.

In this entire series of comparisons we have consistently used the RS model,
D = 2.95, and 3D random percolation exponents in every case but one. (One would
expect 3D random percolation most of the time, and the one case interpreted as
2D invasion percolation was for a coarse Hanford site medium, where wall flow
is known to occasionally cause difficulties.) The fact that all the laboratory experi-
ments, and all the field data, were consistent with a single theoretical result (albeit
one for which the fundamental time and length scales could be adjusted) is strong
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evidence of the relevance to chemical reactions of solute transport by advection. It
also adds motivation for calculating the fundamental scaling constants of the results.

Note that Maher [100] ascribes significance to her analyses showing nearly the
same reaction rate dependences on both time and distance, at least in what is there
denoted as the transport-limited regime. If these two dependences were the same,
this would imply that solute velocities were scale-independent. But if solute veloci-
ties were scale-independent, then there would be no reason for transport-limitations
on reaction rates to introduce the observed scale dependence. But if our analysis
is correct, we should expect different powers in these two functions, since the so-
lute velocity is not independent of length scale, even though at small enough length
scales it does reduce to the fluid velocity. In our view, analysis of the temporal
(Figs. 11.28–11.30 and 11.32–11.37) and spatial (Fig. 11.31) dependences of the
reaction rates shows that the two different representations of the data exhibit dis-
tinct functional dependences, in accord with our theory.

Sometimes one is interested in the dependence of reaction rates on the scale of
measurement, rather than of transport. For example, Navarre-Sitchler and Brantley
[113] found a power-law increase of apparent reaction rates with increasing scale of
measurement, and interpreted this result in terms of a reaction front with a fractal
structure. Such a fractal structure can produce a surface area that grows more rapidly
with increasing scale than does a Euclidean object. But percolation theory also gen-
erates such a fractal surface, and in principle it is possible to calculate the geometry
of such a reaction front within the same theoretical framework that generates the
solute velocities. In particular the perimeter of a 3D percolation cluster has two con-
tributions [91]: one proportional to the square of the radius, and one proportional
to the volume of the cluster. The theoretical results from percolation theory apply
only when the linear dimension of such a cluster is at least ten individual units, e.g.
bond lengths, pore separations, or a surface roughness scale [67]. Let us define the
radius of a large cluster as the correlation length, χ , from percolation theory. Such a
large cluster can mark the expansion of the weathering front. The volume of a large
three-dimensional percolation cluster is thus proportional to χ2.5 (M ∝ χdf , where
df ≈ 2.5 is the universal mass fractal dimension of large clusters near the percola-
tion threshold; Stauffer and Aharony [162]), meaning that the surface area, A, has
two terms: one is proportional to χ2 and the second is proportional to χ2.5. Thus we
have

A ≈ C

(

χ2 + χ2.5

χ0.5
0

)

(11.37)

where χ0 is a fundamental length scale which we discuss below.
In Fig. 3 of Navarre-Sitchler and Brantley [113], the reaction rate increases as the

0.33 power of the measurement scale. Their interpretation in terms of a fractal sur-
face allowed extraction of a surface fractal dimension Ds = 2.33. Consider alterna-
tively the percolation treatment, Eq. (11.37). Surface areas at the smallest scales are
measured by N2 BET techniques, and thus cannot distinguish length scales smaller
than the molecule itself. The linear dimension of a nitrogen molecule is on the order
of 10−7 mm; we choose χ0 an order of magnitude larger, 10−6 mm. Using the ad-
justable parameter C = 10−5.5, we then generate the comparison in Fig. 11.38. This
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Fig. 11.38 Dependence of
weathering rates on length
scale, interpreted in terms of
a fractal weathering front
(from [114]) and interpreted
in terms of the surface area of
a large cluster using
percolation theory. The
former employs two
adjustable parameters, the
slope and the weathering rate
prefactor, while the latter
employs a single adjustable
parameter, the fundamental
weathering rate prefactor

figure also shows the result of Navarre-Sitchler and Brantley [113]. Although their
result represents a simpler functional form, they require two adjustable parameters;
one is the power, the second is the intercept. Ours requires only one, the value of
C given above. Thus our result has the advantage of parsimony in addition to the
consistency with the theoretical formulation of the solute velocity.

11.6 Dispersion Coefficient as a Function of Time

Theoretical results for Dl(t) are shown in Fig. 11.39. We concentrate on the results
obtained for systems with large disorder, i.e., large contrasts in hydraulic conductiv-
ity. Using invasion percolation exponents [160] makes Dl(t) a small positive power
for all times. Using random percolation exponents [160], Dl(t) is a small positive
power for five (three) decades in time in 2D (3D), but diminishes in time thereafter.
The values of the approximate early-time powers shown in Fig. 11.39 are 0.372 for
2D random percolation with large disorder, and 0.231 for 3D random percolation
with large disorder (using our usual value, D = 2.95).

The predicted diminution in Dl(t) at large times should probably be replaced by
a constant, representing a kind of universal behavior, because it seems unlikely that
the variance of a solute plume can grow more slowly than for a Gaussian process.
Such a cross-over at large times to time-independent behavior (argued also in [58,
59, 131]) might be generated from our results by arguments from the central limit
theorem. While this comment is somewhat speculative, the time at which this change
in behavior occurs does correspond to the solute transport distance at which a cross-
over to nearly universal behavior in the scale dependence of the dispersivity actually
occurs. Further, the ability to generate a long-tailed distribution in space (as we show
below) appears unaffected by the temporal results, as in [180].

Even though our prediction of the dispersion coefficient allows faster than Gaus-
sian increase in Dl(t) for only a limited range of times, it is still useful. A pre-
asymptotic regime of three decades of time (3D) corresponds to measurements from
10 minutes to a week, or from 1 day to 1000 days; five decades (2D) corresponds
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Fig. 11.39 The temporal
scaling of the dispersion
coefficient Dl for various
types of percolation (random
unless otherwise specified,
otherwise invasion),
dimension of the flow (2d or
3D), and both ordered and
disordered media

to measurements taken over a period of 10 minutes to two years. In 3D the approxi-
mate scale exponent at shorter time scales is 0.231, i.e., Dl(t) ∝ t0.231, while in 2D
Dl(t) in this time range is proportional to t0.372. This scaling allows us to compare
with experimentally determined results [99, 137, 165, 166] for the variance of a Bor-
den aquifer plume in Fig. 11.40 (below, including further discussion). The 2D result
is confirmed separately by comparison with simulations of Rivard and Delay [136]
for log-normally distributed conductances. In [136] it was found that Dl scaled as
system size to a power between 0.56 and 0.68, which leads to powers of Dl(t) as a
function of time [93] between 0.56/Db = 0.34 and 0.68/Db = 0.41, using the 2D
value82 of Db as 1.6432 [57]. The result that Dl(t) scales as a small positive power
of t is well-known, while the tendency for the rise in Dl(t) to be restricted to a
limited time frame is known from modeling:

It is found that the macroscopic dispersion coefficient increases with time approximately in
a power law prior to reaching an asymptotic value, but the spatial distribution of the plume
remains non-Gaussian and cannot be described adequately by the advection-dispersion
equation. [180]

Our prediction of the variance of a Borden aquifer plume (Fig. 11.40) conform to ex-
periment at least as well as those shown in Neuman and Di Federico’s [117] Fig. 13.
Actually our results are nearly coincident with theirs, except near t = 0 where ours
yield a variance of zero. Note that at this stage in the discussion our result is only
a one-parameter fit, not a prediction, since we only used the power of t shown in
Fig. 11.39, varying the prefactor to improve the match.

When using L = 1 meter as the fundamental length scale (see Sect. 11.4), the
cross-over to universal behavior occurs at about 101.35 = 22.4 m in 3D, or 100 m in
2D (Fig. 11.18). Because the change in slope and the cross-over to universal behav-
ior in the dispersivity likely accompany a cross-over to (universal) time-independent
Dl, and because this cross-over should occur at the correlation length from percola-
tion theory, we find support for our fundamental hypothesis in new analyses of the
Borden aquifer:
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Fig. 11.40 Predicted scaling
of the variance of the Borden
aquifer plume with no
adjustable parameters,
compared with actual
measurements

This analysis revealed that macrodispersion at the Borden site is primarily controlled by the
proportions, and the mean and variance in length of larger-scale strata of medium sand (M)
and strata of fine sand and silt (FZ) [. . .]. When sampling the pattern in the longitudinal
direction, M and FZ couplets repeat at 10 m intervals on average, with a high length vari-
ance. To reach a time-constant macrodispersivity, the stratal length variability must be fully
sampled by the plume [. . . ] beyond an advective distance of about 60 meters, corresponding
to about 12 longitudinal transitions between M and FZ unit types. [130]

Note for further consideration that the proportions of fine sand and silt enter into the
calculation of D in the random fractal model ([75] DOE PNNL) of the medium.

How do we work with the universal behavior of dispersivity? We make the un-
derlying assumption (which may be expressed as a hypothesis) that the cause of the
uniformity in experimental values of α(x) for large x is the universal behavior that
we derived. When experimenters use larger initial solute volumes (larger than the
1 m value we used for all experiments), universal behavior will set on at larger mean
transport distances, meaning that the dispersivity at that cross-over will also have to
increase. Thus we must first choose an x scale commensurate with the initial solute
volume, then adjust α so that the universal portion of the curve is unchanged.

To illustrate, an initial solute volume of 12 m3 and vertical size 1.6 m [165]
should have horizontal dimensions roughly √

(12/1.6) = 2.8 m each. Thus we
rescale the horizontal axis of Fig. 11.18 by a factor 2.8. Now the vertical axis must
be rescaled by 2.81.13 = 3.2 (1.13 is the value of the exponent for 3D random per-
colation, large disorder, from Table 11.2). Then the cross-over to universal behav-
ior, which in Fig. 11.18 takes place at x = 101.35 = 22.4 m and α = 100.8 = 6.3
m, should now occur at 22.4 × 2.8 m = 64 m, and α at that point should be
3.2 × 6.3 m = 19 m. The mean solute transport distance after 647 days is about
60 m. The variance of the solute distribution at that cross-over should scale the same
way as α, so its value of 29 m2 (taken from the predicted dispersion coefficient in
Fig. 11.40) should be replaced by 93 m2. The value of 93 m2 is approximately equal
to the variance at 1040 days (84 m2 from experiment, or 86 m2 for our fit), mean-
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ing that our estimate of α (and the variance) is not reached until the next time step
at larger x. But our pre-asymptotic power-law result for Dl(t) using essentially this
value of the variance (actually 86 m2) for 1040 days could fit the variance for the en-
tire range of experimental values (Fig. 11.40) without use of adjustable parameters,
and without any knowledge of the structure of the medium!

We interpret the above to mean that, at the time the plume is introduced, it is
sampling heterogeneity on the scale of its lateral dimensions, say several meters.
Length scales smaller than the plume’s initial extent are not particularly relevant.
Then when the plume starts to sample much larger scales it is approaching universal
behavior anyway, and new heterogeneities do not alter that behavior. This represents
the fundamental difference between a theory (ADE) which yields at large scales
asymptotic Gaussian behavior in both space and time, and the present theory which
(probably) yields Gaussian behavior in time but a continued rise in α. Accordingly
we suggest that the experimental scale (initial extent of introduced solute) does in-
fluence the scale where experiments appear to cross over to universal behavior. This
is an important experimental control; in order to translate a curve one decade to
the right (one order of magnitude increase in space), one would normally need to
increase the initial volume of solution by a factor 1000. The relevance of a funda-
mental scale factor on a log-log graph that relates to the cube root of the injected
volume thus should tend to strongly pin experimental results to a given spatial scale.

How would critical path analysis from percolation theory have addressed this
problem before the current research? Hunt [66, 67] suggested that the correlation
length of percolation theory should be proportional to a fundamental bond length.
Hunt and Idriss [72] then showed that geoindicator statistics applied in 1D could
find this fundamental bond length, as almost no system is near the 1D percolation
threshold (pc = 1). It is also known [66, 67, 72] that the cube of the percolation
correlation length should be a Representative Elementary Volume (REV). Hunt’s
[67] Fig. 6 showed that critical path analysis for systems with wide ranges of lo-
cal conductances should have a correlation length roughly 10 times a fundamental
bond length. Finally, Ramanathan et al. [130] stated that the fundamental deposits
controlling the dispersion were about 5 m in length on average: “M and FZ couplets
repeat at 10 m intervals on average.” We therefore could have predicted a cross-over
to universal behavior at something over 50 m. However, we would not have been
able to estimate a dispersivity, or a variance at that scale, nor would we have known
the temporal behavior at either larger or smaller length scales.

11.7 Hydraulic Conductivity

While prior calculations have generated the hydraulic conductivity, K , through an
optimization of the effects of pore size distributions and the connectivity/tortuosity
factor, it should also be possible to find K directly by summing the contributions
over all g of gW(g)t0/t (g). Because there is a local minimum in the arrival time at
a g near gc, and the distribution of g values is sharply peaked at g = gc, the value
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of the hydraulic conductivity is controlled by gc and can be found by optimization.
This is an important project that needs to be addressed in the future.

11.8 Asymptotic Treatment of Diffusion Effects

11.8.1 Theoretical Considerations

We treat the effects of diffusion only at the pore scale, again using the RS frame-
work we have used for most of this chapter. Equation (11.10) is, at the pore scale,
consistent with treatments based on the Peclet number, Pe. We wish to represent
the probability, f , that a particle diffuses off a given path characterized by a given
flux at some particular pore with radius r (and length l proportional to r). Equation
(11.10) derives from the idea that probability fluxes are proportional to concentra-
tion gradients; thus probabilities per unit time for individual particles are constant.
This implies that the probability that a particle can exit a given pore by diffusion is
the ratio of the advection time, tA to the molecular diffusion time, tD. tD = Dm/r2,
while tA = r/u. The inverse ratio of tD/tA is known as the Peclet number, Pe:

Pe = r2/Dm

r/u
= ru

Dm
(11.38)

Thus the probability, fi , that a given particle leaves pore i by diffusion is (also found
in [101]),

fi ∝ tA

tD
= 1

Pe
= Dmr

Q
(11.39)

where Q is the fluid mass flux through a pore. A compatible result that the time
for escape from a dead-end is proportional to Pe was found in Stauffer and Sornette
[163], as transition rates and survival times are inverses of each other. The final
equality arises from the identity Q = Au ∝ r2u. The assumed proportionality of
pore length and radius makes A/l ∝ r . On a path with conserved Q, the pore with
the largest radius provides the best chance to escape on account of its smallest value
of Pe. The probability that the particle remains on the flow path at a given pore is
1 − f . In order to stay on the given flow path it must stay on at every opportunity,
which generates a product of 1 − f over all the pores along the flow path. If fluid
velocities are large, f is so small that we can use the relationship exp(−dx) ≈
1 − dx to transform the product

∏

i

(1 − fi) (11.40)

to

exp

(

−
∑

i

fi

)

= exp

(

−
∑

i

1

Pe

)

(11.41)
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We can simplify the sum inside the exponential by representing it as the product of
a typical value of P−1

e and a number corresponding to the frequency of opportunities
to “jump” to another flow path. This number is essentially the number of correlation
lengths, χ , traversed, and can be found by taking the product of the number of pores
visited on a path (x/rm)dmin |1 − (g/gc)

1−D/3|−dmin and the fraction of pores that
provide close contact with other paths rm/χ :

exp

[

− rm

χ

(
x

rm

)dmin
∣
∣
∣
∣

1

(
g
gc

)
1−D

3 − 1

∣
∣
∣
∣

dmin
(

1

Pe

)]

(11.42)

We chose the scaling exponent dmin, which gives the fractal dimensionality of the
optimal path [64]. This choice was made because we assumed that the spatial tortu-
osity factor is relevant to counting the number of opportunities for diffusion-induced
transitions off the path. Perhaps the mass fractal dimensionality, Db, would be a bet-
ter choice here, but the answer to this question is as yet unknown. In addition to the
obvious tendency for factor (11.42) to reduce the contribution of highly tortuous
paths (with g near gc) to large travel times, it also reduces the tendency of very slow
paths (with small controlling g and thus small Pe) to contribute to large travel times.
There has been some question as to which of these cases was most important to
incorporate into dispersion calculations [55, 87, 135], so it is rewarding to find that
our calculation scheme accounts for both automatically.

Equation (11.19) must now be multiplied by (11.42) to generate

W(t)dt = gW(g)

dt/dg
exp

[

− rm

χ

(
x

rm

)dmin
∣
∣
∣
∣

1

(
g
gc

)
1−D

3 − 1

∣
∣
∣
∣

dmin
(

1

Pe

)]

(11.43)

This result is approximate, in principle valid only when Pe is large, because for
smaller Pe the escape probability must be treated more carefully. More importantly,
for smaller Pe we must account for particles that diffuse onto given flow paths
as well. Such a treatment is related to a discretized Chapman-Kolmogorov equa-
tion, but is more complicated by virtue of the correlation between escape prob-
abilities and the (fractal) length of the path. The continuous time random walk
(CTRW) treats these effects consistently with particle conservation, and can even
address situations with non-conservative solutes without the kind of approxima-
tions that we use here. But an unambiguous correspondence to CTRW does not yet
exist.

In order to analyze the effects of an increase in Peclet number, we must at least
distinguish between two cases: reduction in the molecular diffusion coefficient, and
increase in fluid velocity. In the latter case, an additional effect is that solute parti-
cles are advected downstream faster, meaning that large clusters of interconnected
resistances become important at smaller times. This effect is easily treated sim-
ply by adding a factor of 1/Pe to the expression (Eq. (11.23)) for t (g). In Hunt
and Skinner [75] this factor was not included, so that derivation is appropriate
only for the case of reducing the diffusion constant. In Hunt and Skinner [75] it
was found that the slightly superlinear dependence of the dispersion coefficient on
Peclet number over the range 1 < Pe < 100, noted from many experiments and
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Fig. 11.41 Effects of
diffusion on the long-tailed
arrival time distribution.
Gaussian behavior is
approached as the Peclet
number Pe diminishes
towards 1

simulations [19, 20, 55, 87, 135], was reproduced by our predictions, but that the
approximately linear dependence on Pe for higher Peclet numbers was not seen.
We will see below that accounting for the reduction in t (g) by the factor 1/Pe
does not affect the conclusions at small Pe much, but that it helps (under certain
circumstances) to bring predictions into accord with observation at larger values
of Pe.

11.8.2 Results

The most important effects in either case are that the heavy tails in spatial and
temporal distributions disappear (Fig. 11.41) and, as a consequence, the expected
Gaussian spreading is eventually recovered [34, 58, 59, 103]. The time at which the
effects of diffusion set on diminishes with diminishing Peclet number. As a conse-
quence, the rises in the value of the dispersion coefficient with increasing time, and
of the dispersivity with increasing scale, are terminated. In the case of the disper-
sion coefficient (not shown), the effects are not spectacular, since our theory does not
generate an indefinite increase with increasing time anyway. But if diffusion is rel-
evant, at some spatial scale the value of the dispersivity must level off (Fig. 11.42),
consistent with Gaussian spreading. This result is simply not seen in the experi-
ments compiled (Fig. 11.18), with the possible exception of one data point. So we
conclude that the effects of diffusion are negligible, at least at large spatial scales
(upwards of 1 m). While many physicists might find this reasonable, it is quite an
unusual conclusion among scientists active in explaining properties of porous me-
dia. We also show in Fig. 11.42 the variability introduced into the calculation of the
dispersivity by the alternate means of its calculation.

Using parameters representative of disordered media, for four different times
we examine the dependence of the logarithm of the dispersion coefficient on the
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Fig. 11.42 Effects of diffusion on the dispersivity for relatively large Peclet number. Results for
two alternative calculations (as well as that of Fig. 11.18) of the dispersivity are shown as well, but
for the case of infinite Peclet number

Fig. 11.43 Scaling of the dispersion coefficient with Peclet numbers in the range 1 < Pe < 1000

logarithm of the Peclet number (Fig. 11.43). As time increases, the initial value
of the dispersion coefficient diminishes and the initial slope of Dl (Pe) vs. Pe in-
creases. The range of Peclet numbers plotted is from 1 to 10,000. The straight line
has slope of 1.3. The result is a superlinear power, at least for the three small time
values, though with slope a little larger than the commonly reported value of 1.2
[19, 20, 55, 87, 135]. For the largest time value, systematic increase of the Peclet
number eventually brings the system past the peak in the dispersion coefficient as a
function of time, leading to a more complicated (and unverified) dependence of the
dispersion coefficient on Peclet number. But for the three smaller time values we
see a diminution of the slope of Dl (Pe) vs. Pe, as noted also in [19, 20, 55, 87, 135].

In Hunt and Skinner [75] the dependence of the dispersion coefficient on Peclet
number for 1 < Pe < 100 was very nearly P1.2

e , as expected.
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11.9 Discussion

In this chapter we have made comparisons of our theoretical predictions of the dis-
persivity with over 2200 experimental measurements. We have also compared our
theoretical predictions of typical solute velocities with over 900 measurements of
the spatial and temporal scaling of chemical reactions. In the case of the tortuosity,
nearly 100 measured values were discussed. For saturation-dependent dispersion,
the number of individual experimental values investigated was almost 500, though
in other cases fewer experimental results could be accessed. Altogether, approxi-
mately 4000 individual measurements from this chapter confirm our predictions.
Two results were unexpected: (1) That experimental results would show so little ev-
idence of the relevance of diffusion in any property, and (2) That the scale of the
experimental apparatus would have such a large effect on the dispersivity.

There are still some uncertainties regarding our theoretical development. It ap-
pears that we do not predict a monotonically increasing dispersivity with increasing
disorder. Experiments may indicate otherwise. We earlier expressed hope [76] that
our treatment could be used to inform the choice of exponents in the CTRW, but it
does not appear that our results are in accord with that framework for discussion.
We attribute the discrepancy to the result in our theory that the long-time tails of
the arrival time distribution are not true power laws, but we have as yet no proof.
Finally, our theoretical description of dispersion does not incorporate spreads of
cluster transit times on single clusters of interconnected conductances. Rather, it
incorporates simultaneous treatment of clusters with different controlling conduc-
tance values. This is in keeping with a percolation cluster treatment of ac hopping
conduction at low frequencies that is known to generate the appropriate frequency
dependence of the ac conductivity [65], as well as finite size corrections to infinite
size calculations of the dc conductivity. This latter calculation was also tested in
the context of porous media [67]. Nevertheless, it is not obvious that the present
theoretical treatment must be accurate. Therefore we appeal to its successes in the
following areas, demonstrated in this chapter and cited publications. All of these
successes stem from the same model, the generalized pore-sold fractal model, and
most of them from the subset of parameters that allows the PSF model to reduce to
the RS model.

1. We predicted the evolution with system size of the distribution of particle arrival
times in 2D simulations at the percolation threshold. The tail of the simulated
distribution [96] decayed according to the power, −1.56.

2. The power that was obtained for comparison with the 2D simulations is equal
to the observed power for fracture flow, but commonly attributed to diffusive
exchange with the rock matrix. Here it should be mentioned that Becker and
Shapiro [14], in a stringent test using various solutes with differing diffusion
constants, found that matrix diffusion had no effect on the dispersion experi-
ments.

3. We were able to predict the temporal dependence of the variance of the Borden
aquifer dispersion tests without use of adjustable parameters, or even detailed
knowledge of the subsurface.
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4. We could generate the saturation-dependence of the distribution of arrival times
observed in two media (including its fundamental time scale), one of which
could be predicted without use of adjustable parameters.

5. The prediction of the envelope of dispersivity values over 10 orders of magni-
tude of length scale was verified.

6. The predictions of the scaling of chemical reaction rates over 13 orders of mag-
nitude of time scale were verified.

7. The predictions of the scaling of chemical reaction rates over approximately 8
orders of magnitude of length scale were verified.

8. The predictions of the (power-law) temporal scaling with system size of the
typical arrival time in dispersive transport were verified for both amorphous
semiconductors and polymer systems. Here we generated not only the typical
values of the power, but its variability as well.

9. The observed Peclet number dependence of the dispersion coefficient was gen-
erated by the theory when diffusion was incorporated.

10. Results for the measurement scale dependence of chemical reaction rates were
generated using a single unknown parameter.

Can we generate Gaussian dispersion from the present theory? Margolin and
Berkowitz [103] note that Gaussian dispersion should result when the first and sec-
ond moments of the arrival time distribution exist (β > 2 in CTRW notation). The
slope of W(t) for Db = 1.46 is already very nearly −3, which according to CTRW
should equal −(β + 1); for smaller values of Dopt = 1.217, such as appropriate for
the chemical path length, we should then expect Gaussian dispersion. However, the
conditions for which such a choice of fractal dimensionality might be appropriate
are not known. We hypothesize that Dopt may be appropriate under conditions when
the medium is fairly homogeneous both from the standpoint of the pore-size distri-
bution, and from the relevance of any percolation structures. This hypothesis aligns
with the arguments of Bruderer-Weng et al. [25], who argue that flow channeling
is relevant to long-tailed arrival time distributions, though in our case the actual
cause of the long-tailed distributions remains the relevance of the tortuosity of the
pathways and the fractal dimensionality of the backbone, while the flow-channeling
along such structures arises from a wide range of pore sizes.

Appendix: Basic CTRW and Gaussian Results

For Gaussian dispersion:

〈x〉 ∝ t (11.44)

σ(t) ∝ t0.5 (11.45)

For CRTW:

ψ(t) ∝ t−1−β, t → ∞ (11.46)
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– If 0 < β < 1

〈x〉 ∝ tβ (11.47)

σ(t) ∝ tβ (11.48)

– If 1 < β < 2

〈x〉 ∝ t (11.49)

σ(t) ∝ t (3−β)/2 (11.50)

Sahimi [144]:

– If 0 < β < 1
〈
x2〉 ∝ t2β (11.51)

– If 1 < β < 2
〈
x2〉 ∝ t3−β (11.52)

While our results are compatible with Eq. (11.47) and Eq. (11.48) (within 5 % de-
viation), we do not find that the long tails of the distribution are compatible with
Eq. (11.46) for values of β obtained from either Eq. (11.47) or Eq. (11.48). Here we
find discrepancies.

This means that, as yet, we cannot map our treatment of dispersion onto the
CTRW. If such a correspondence could be made, the calculation of dispersion for
both conservative and non-conservative solutes would be greatly simplified, since
the CTRW is already designed to treat either case. In other words, complications
due to particle conservation can be incorporated into the CTRW even when some
of the particles are adsorbed on surfaces or otherwise lost to the flow, even if sub-
sequent desorption is also possible. Thus an important goal of subsequent research
is to investigate more closely the relationship between the present treatment and the
CTRW.
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Chapter 12
Effects of Multi-scale Heterogeneity

It is commonly believed that problems with multi-scale heterogeneity present the
biggest challenge to computation and understanding. A few such problems may be
easily treated using percolation theory. We must point out here, however, that in
the time since the publication of the second edition of this book, our research alone
has called into question many of the assumptions regarding the role of multi-scale
heterogeneity that is imposed through more complicated models, including some
suggestions made in this book. Multi-scale heterogeneity does not need to exist in a
medium in order for the dispersivity to be a linear function of length scale and the
variogram range to be proportional to the linear dimension of the support volume.
In addition, when we actually investigated experiments of the air permeability, ka,
on thirty-seven different media, we were able to find no evidence of the relevance
of structural pores to the scaling of ka with saturation. The simple universal scaling
function from percolation appeared to describe soils with and without soil structure
equally well. Thus we found no basis for assuming the relevance of a hierarchical
model, in which the structural pores could be treated essentially in parallel with the
textural pores. One could consequently argue that we should no longer present that
treatment of the air permeability here. We keep it, however, for four reasons. One
is that, in order to understand why we say that we found no evidence that such a
hierarchical model was relevant, it is necessary to see what its predictions are. The
second is that such dual porosity models have been around a long time and have
been used to try to explain many things—even though our particular results seem
to indicate that they are not necessary. The third is that it is instructive to see what
self-consistent conclusions one can logically make when addressing problems of
more complex media. The fourth is that it is too early to state that such hierarchical
models will never be found to be relevant.

Three other problems will be dealt with, one treats a two-scale upscaling prob-
lem, where the percolation variable is different at the two scales, the second was
only meant to be a schematic treatment of a geologic scale hierarchical problem,
but appears to have captured the essence of a “scale effect” on the hydraulic con-
ductivity. The third is a problem of saturation-dependent anisotropy in the hy-
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draulic conductivity at the U.S. Department of Energy Hanford site in Richland,
WA.

12.1 Soil Structure

To a physicist without agricultural background the easiest way to imagine a soil with
structure is to call back memories of throwing dirt clods. The relatively large spaces
between the dirt clods would represent the “structural” pores, while the interior
of the dirt clod contains “textural” pores. The soil structure refers to the existence
of clods, called “aggregates,” and the space between them, and knowledge of the
structure implies knowledge of the statistics of the occurrence of aggregates of a
given size, structural pores as a function of size, and any spatial correlations in their
location. Realistically, however, one is fortunate indeed if one has a measurement
of the distribution of structural pore sizes, even though soil structure has been a
consistent subject of agricultural and soil physics research for about a half a century
(e.g., [26]).

In any discussion of transport properties of such media one runs immediately into
a conceptual problem. Imagine that the structural pores are relatively ordered and
that they may be connected on a multi-centimeter grid like random resistors. Clearly
one can represent the textural pores as shorter resistors (with larger resistance val-
ues) inside each grid cell, and allow them to connect to the structural resistances
at the boundaries of each grid cell. But can one allow the resistances representing
the textural pores in one grid cell to connect to those representing the textural pores
in a neighboring grid cell without connecting to the structural pores that divide the
cells? This is a critical conceptual problem, and to our knowledge there is no gen-
eral answer. If one allows such connections, one has what is called a “dual porosity”
model [19], if one does not, one has a hierarchical model. Since both types of model
are used, there is clearly no general consensus as to what is physically allowed. The
difference in transport is as follows. In the hierarchical model, when the saturation
drops to the extent that water no longer occupies the structural pores, all processes
which require a continuous water phase cease. Since this is clearly not the case in
agricultural soils, dual porosity models are more common in the soil science litera-
ture. However, in geological applications with different contexts hierarchical models
tend to be the rule.

When a dual porosity model is used for soil structure, the percolation treatment is
relatively easy; the two contributions to the pore space are simply treated as though
they exist in parallel to each other, and there are no additional limitations considered
to transferring water between the structural and textural pores. As a consequence the
total porosity of the medium is obtained using a sum of the contributions from the
structural and textural pores. If both can be treated as fractals, for example, one has,

φs = 3 − Ds

r
3−Ds
sm

∫ rsm

rs0

r2−Ds
s drs φt = 3 − Dt

r
3−Dt
tm

∫ rtm

rt0

r
2−Dt
t drt (12.1)
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and

φ = φs + φt (12.2)

Here the subscripts s and t stand for structural and textural respectively. As long
as the smallest structural pore radius is larger than the largest textural pore, a gen-
eral procedure can be formulated, which does not make any particular distinction
between the two types of pores, except as regards critical volume fractions for per-
colation. Such values should be treated separately.

For simplicity it will be assumed here that the largest textural pore is smaller
than the smallest structural pore. The data, with which the theoretical predictions are
compared, will conform to that constraint. Then, as water drains from the medium,
it will drain first from the structural pores, before it can begin to drain from the
interior of the aggregates; this is simply another consequence of the Young-Laplace
relationship between the tension and the pore radius. It is typical for researchers in
the field of soil physics to assume that the effects of soil structure are limited to
large moisture contents (e.g., [19]). Since we will use the same type model for the
structural pores as for the textural pores, we will assume that the critical volume
fraction for percolation of the structural pores is approximately φs/10, exactly as
assumed for textural pores when the specific surface area is small. For structural
pores, with radii much larger than textural pores, this assumption is realistic. Since
structural pores typically account for only about 10 % of the total porosity, φs/10 is
actually only about φ/100, and can probably be set to zero without serious difficulty.
Furthermore, setting the critical volume fraction for the structural pores equal to
zero is consistent with the assumption that they do not provide a barrier to water
flow at any water content (dual porosity) and with the assumption that they can
drain completely. These characteristics also appear to be in accord with experiments
generally.

Under the above conditions, the derivation of water retention curves is also brief.
For θ > φt, one has,

θ = 3 − Dt

r
3−Dt
tm

∫ rtm

rt0

drtr
2−Dt
t + 3 − Ds

r
3−Ds
sm

∫ rs>

rt0

drsr
2−Ds
s (12.3)

In Eq. (12.3) rs> refers to the largest structural pore that contains water, and it is
given through the usual constraint, rs> = A/h, where A is, also as usual, unknown
in value. For θ < φt, the result of Chap. 4 applies, using the subscript t for textural
pores. The fractal dimensionality of the textural pores is found exactly as already
shown in Chap. 4. The fractal dimensionality of the structural pores is found by an
analogous procedure, although in this case one often has direct data for the pores
themselves, and not for a surrogate, such as the particle size. Since the ratio of small-
est to largest particle size is typically assumed to be the same as that for the smallest
to the largest pore size, there is no difference in the calculations. However, the scal-
ing formulation for water retention will require the use of a parameter inversely pro-
portional to the largest pore size, hA, and knowledge of the largest structural pore
size, but the largest particle size for the textural pores, makes a finding a relationship
between these two quantities difficult without appealing to experiment.
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Fig. 12.1 Particle size data for the Monona soil (data unpublished, S. Logsdon)

The hydraulic conductivity is calculated as follows. For moisture contents θ ≤ φt,
such that the structural pores are empty, the result for K is exactly as in Chap. 5, but
with all quantities (fractal dimensionality, critical moisture content, and porosity)
referred to the textural pore space. For moisture contents θ > φt, such that some
fraction of the structural pores is also wetted, the result for K is a sum of a con-
stant term, corresponding to full saturation of the textural pores, and again a term
of the same form as in Chap. 5, but written in terms of the structural quantities. In
principle, the hydraulic conductivity for the structural pores should also undergo a
cross-over from pore-size dominated to connectivity dominated forms, but in ac-
tual comparison with experiment such a cross-over is not included for five reasons:
(1) the porosity associated with structural pores is so small (in the case to be consid-
ered, 0.04) that division into multiple ranges appears overambitious, (2) the cross-
over moisture content depends on the critical volume fraction for percolation, which,
though likely very small, is merely assumed to be zero, (3) the connectivity may not
be completely percolation dominated, since plant roots (particularly in agricultural
soils) may introduce a spatial scale (some regularity in separation), (4) in the range
of lowest saturations of the structural pores, where the discrepancy between theory
and experiment will be largest, the hydraulic conductivity due to the textural pores
will dominate in many cases, (5) in most cases measurements of the hydraulic con-
ductivity will never be accurate and detailed enough to discover the precise form of
K in this range of moisture contents.

The particular case considered for comparison with experiment has φs = 0.04,
φt = 0.376. The particle size data (given in Fig. 12.1) yield Dt = 2.81. The optical
pore size data (given in Fig. 12.2) yield Ds = 2.979. The particle size data is nearly
identical to the McGee Ranch soil, with D = 2.81, rm = 54 µm and r0 = 4.3 µm,
so we use the same θt value, 0.11. Figure 12.3 shows the comparison between the-
ory and experiment for the water retention curve. In order to obtain the agreement
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Fig. 12.2 Optical data for structural pores of a soil adjacent to the Monona soil

Fig. 12.3 Experimental data for the water retention function of the Monona soil together with
the predictions of Eq. (12.3) for both the structural and textural pores separately. Two adjustable
parameters, the equivalent air entry pressures for each pore size range, are used

shown, the air entry pressures for the textural and structural pores had to be chosen
to be 340 cm and 26 cm, respectively. Thus the ratio of saturated hydraulic conduc-
tivities for the structural and textural pores must be assumed to be,

KSs

KSt

=
(

340

26

)2
(1 − 0)

3
3−2.979

(1 − 0.11)
3

3−2.81

= 1077 (12.4)
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Fig. 12.4 Data for the hydraulic conductivity for several depths of the Monona soil. The predicted
hydraulic conductivity from Eq. (6.16) using two parallel contributions, one from the textural pores
and one from the structural pores. The porosities and fractal dimensionalities of each are known,
and the ratio of the values of KS is given by Eq. (12.4), so there is only one adjustable parameter in
the comparison, the value of KS for the structural pores. For the soil at the surface the theoretical
prediction agrees. However, the experimental data at one depth drop more rapidly than predicted
with declining moisture content and then remain constant, even though the moisture content con-
tinues to drop

Using these parameters, the hydraulic conductivity may be predicted using one ad-
justable parameter, KSs , and the comparison of that prediction with experiment is
given in Fig. 12.4. This comparison appears reasonable for a one parameter predic-
tion.

In another exercise consider the effects of the structural pores on the air perme-
ability. In this case, the dual porosity treatment leads to a constant contribution to
the air permeability from the structural pores for all water contents less than φt. This
contribution masks the singular behavior of the contribution of the air permeability
from the textural pores, and the air permeability appears nearly flat over most of the
range of air-filled porosities. Then, for θ > φt, the singular behavior of the air per-
meability due to the structural pores causes a very rapid drop in air permeability as
saturation is approached. The general effects of soil structure on the air permeabil-
ity and hydraulic conductivity (as functions of saturation) are shown in Fig. 12.5.
This result explains the general tendency for the minimal dependence of the air per-
meability on air-filled porosity for highly structured soils, as well as the perception
that the air permeability may be non-zero at full saturation (since it is so difficult to
achieve 100 % saturation, particularly with the large hydraulic conductivity associ-
ated with such large structural pores).

Note that, as expected with a small range of porosity associated with much larger
pores, drainage of these larger pores causes the hydraulic conductivity to fall pre-
cipitously over a very small range of moisture contents before it drops more slowly
over a wider range of moisture contents associated with the textural pores. This fea-
ture is very common among soils; in fact it is so common that the van Genuchten
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Fig. 12.5 Predictions of the air permeability for the Monona soil. The open diamonds describe the
result of using Eq. (7.2) for the textural pores only. The open squares give the additional contribu-
tion from the structural pores

parameterization introduced in Chap. 3 was developed to predict such a change in
curvature from positive to negative with diminishing moisture content. However, the
van Genuchten parameterization attempts to unite all the ranges of moisture content
into one function. It seems obvious that the structural pores need have no specific
relationship with the textural pores, while at the dry end complications from in-
complete equilibration may be introduced. This leads to major difficulties with the
identification of the parameters of the van Genuchten function. See [8] for further
comparisons.

Thus it is seen that when two scales of heterogeneity exists, one possible avenue
of approach is to use a dual porosity model and apply critical path analysis and per-
colation scaling to both components of the porosity separately. While this sort of ap-
proach may be applicable to three or more scales of heterogeneity as well, the appeal
of an approach, which is, (a) simple, (b) physically-based, and (c) parsimonious, di-
minishes with increasing complexity because of the diminution in parsimony. On
the other hand, use of a van Genuchten type argument, which tacitly assumes a cor-
respondence between the parameters of two different types of pores, also becomes
less appealing with increasing levels of complexity, because its performance tends
to worsen. Clearly any approach to problems with such an increase in complexity is
going to suffer from some defect.

12.2 Variable Moisture Content

A significant problem in the soil science community arises from the understand-
ing of the distributions of the saturated and unsaturated hydraulic conductivity. It
is frequently assumed that the distribution of the saturated hydraulic conductivity
is log-normal, but that the distribution of the unsaturated hydraulic conductivity
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values is normal. However, we have seen in Chap. 7 that narrow distributions of
measured K values ([13], for example) at low saturations may be more a product of
the time limits of the experimenter than of the medium.1 The often quoted results of
Nielsen [18] appear to show that the values of K for steady flow under unsaturated
conditions are log-normally distributed, but doubt has been cast on his results for the
distribution of K values in the context of the doubt generated by his result that K

is exponentially dependent on the moisture content. Most people in the soil science
community believe that K is more nearly a power of saturation than an exponen-
tial function (as indeed expected from the Rieu and Sposito [22], model considered
here in depth). So the question of how K is distributed for saturated and unsaturated
conditions is of considerable interest to the soil sciences community.

Since hydraulic conductivity values in geologic media are typically spread out
over many orders of magnitude, one of the goals of that community for a long time
has been to try to “derive” a log-normal distribution for K . Formulations using
separation of variables in the macroscopic equations (Laplace’s equation), though
simple, are clearly unfounded, since such equations tell us nothing about the mi-
croscopic details of conduction. We will consider only the soil science problems
here.

The results of Chap. 10 appear to imply that, because KS is determined through
Poiseuille flow, it should be (approximately) normally distributed. We believe that
the large spread in experimental results for “saturated” conditions is tied to the lack
of control over the saturated moisture content (which can generate measurements of
the saturated water content of the same sample at different US Department of En-
ergy labs which differ by as much as 20 %). Given the huge effect of structural pores
(with only 10 % of the porosity) on K discussed in the previous section, it is easy
to comprehend that failure to saturate these pores could lead to huge underestima-
tions of KS. But, although we believe that complications due to saturation are very
likely the cause of these results, first consider the following potential explanation
for Nielsen’s experiments.

Below is presented a brief description of a compound upscaling procedure, which
yields a distribution of unsaturated K values which is (approximately) log-normal
for local values of the K(S), which are exponential functions of the moisture con-
tent [6]. This result would then be compatible with the conditions of Nielsen’s ex-
periments [18].

Rewrite Eq. (6.16) as

K(S) = KS

[

1 − φ
1 − S

1 − θt

] 3
3−Dp

(12.5)

In the limit Dp → 3 (with the consequent condition that φ → 0, Eq. (12.5) yields

K(S) = KS exp

[

−3

(
1 − S

1 − θt

)

ln

(
rm

r0

)]

(12.6)

1The fact that these authors tended to replace equilibrium K values less than 5 × 10−8 cm/s with
approximately this value (which represented a maximum experimental time) narrowed the widths
of their K distributions drastically in the limit of small θ .
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Although Rieu and Sposito [22] state explicitly that Dp < 3 for their discrete fractal
model, there is no reason in a continuum model why r3W(r) = r2−Dp cannot be
proportional to r−1. In fact using Dp = 3 explicitly leads precisely to the result that
K(S) is an exponential function of saturation [8], though of not quite the same form
as Eq. (12.6).

If one considers the possibility that the moisture content can vary over length
scales much smaller than a field measurement (such as Nielsen’s), then Eq. (12.6)
could describe the local variability of K due to variable saturation. In the case of
steady flow, the local moisture contents would not be changed by definition, and
one could apply an upscaling procedure to Eq. (11.6). If the local saturations were
normally distributed with mean Sm and standard deviation σS, then applying critical
path analysis [6] to Eq. (12.6) would yield

K(S) = KS exp

[

−3

(
1 − Sm − cσS

1 − θt

)

ln

(
rm

r0

)]

(12.7)

where c is a numerical constant (σS was mistakenly referred to in [6], as the variance
of S). The value of c would be larger for smaller critical volume fractions. Such
values of the critical volume fraction for percolation would not be correlated with θt

for the critical moisture content at the pore scale. Thus Nielsen’s [18] measurements
of an (approximately) exponential form for K(S) on a large scale (Eq. (12.7)) could
be consistent with an exponential form on a smaller scale as well (Eq. (10.5)), and
application of cluster statistics of percolation theory to Eq. (12.6) would yield a
distribution of K values that was approximately log-normal (an approximation for
at least two reasons, clearly).

But actually Eq. (12.5) can be approximated (to first order) by an exponential
dependence of K on S in another limit as well, namely that S → 1 for arbitrary Dp.
If the soil is not structured, the fractal dimensionality is likely to be more nearly
2.8 (occasionally as high as 2.9). For the case D = 2.9, a variation of the moisture
content of 20 %, for φ = 0.4 and θt = 0.04, would produce a variation in K of only a
factor 50. But in the case of structural pores we found that the fractal dimensionality
can be very near 3 (2.98) on account of the small associated porosities. With D

so near 3 the exponential approximation is quite accurate. Further, variation of the
moisture content of only 10 % (0.04 for a total porosity of 0.4) can cause a variability
in K over a factor 500 because of the large power (3/(3 − D) = 150). This range
of variability in K is also roughly compatible with a log-normal distribution, and
ultimately for much the same reasons as might explain the Nielsen [18] experiments.

Thus it is suggested that measurements of both the saturated and unsaturated
hydraulic conductivity distributions can be strongly affected by experimental error:
In the first case a relatively narrow distribution can be perceived to be very wide if
the moisture content is not controlled carefully, and in the second case a very wide
distribution can be perceived as very narrow because of the influence of the time
constraints of the experiment.
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12.3 A Schematic Hierarchical Problem

Media with geological complexity are difficult even to describe. If the description
of a medium is too complex, an analytical application of concepts from percolation
theory is not likely to exist. The purpose here is not to address such complications
seriously; in fact, we would claim that attributing what seem to be exotic behaviors
of the hydraulic conductivity to exotic descriptions of porous media may be mis-
leading. If these “exotic” media appear to produce an increase in K with increas-
ing scale of the medium, then there appears to be a problem of conceptualization.
Thus we seek for simpler causes of such apparent scale effects using known physics
and idealized, but easily verifiable, models. In Chaps. 8 and 9 the examples of non-
equidimensional support volumes and anisotropic hydraulic conductivity fields were
treated, and shown to lead to apparent scale effects. In this chapter it will be shown
that multiple scales of heterogeneity can also lead to a (mistaken) conclusion that
hydraulic conduction becomes easier with increasing length scales.

Consider the following idealized medium [7] composed of seven different types
of material, each of which has seven subunits. Let the hydraulic conductivity have a
log-uniform distribution in each of the 49 subunits. Make these individual distribu-
tions overlap in the following way, The most highly conductive unit has hydraulic
conductivities from 20 to 2−6, in equal proportions, while the next most conductive
unit has hydraulic conductivities from 2−3 to 2−9, the third from 2−6 to 2−12, etc.,
as shown in Fig. 12.6. No assumption is made regarding the shapes of the individual
volumes, which means that this problem is best treated using continuum percolation
theory. If one approaches the upscaling of this medium with a “coarse graining”
procedure, then the effective conductivity of each subunit is first found, and then the
heterogeneous subunits are replaced with a homogeneous material characterized by
the effective subunit conductivity. Since the critical volume fraction for percolation

Fig. 12.6 Discrete hydraulic conductivity distributions for two-scale medium as described in text.
The open bars are the composite distribution of the seven overlapping subunits, each with log-uni-
form distributions. The solid bars are the effective conductivities of each of the subunits, each of
which has an equal chance of being encountered. The arrows point to the effective conductivity of
the system, upscaled from the subunit scale and from the unit scale. The two values are identical
(From Hunt [7])
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in 3D will be less than 0.5, if repeated often, such a procedure will tend to overes-
timate the hydraulic conductivity at the largest scales, since most of the volume of
any given subunit will have a smaller conductivity than the effective value.

A common value of the critical volume fraction for such continuum problems is
ca. 15 % (see Chap. 1 as well), though, as has been seen for problems at the pore
scale, even much smaller values can occur. A point of the coarse-graining of such a
self-similar medium is that Vc must remain the same at every scale. Applying con-
tinuum percolation theory to each of the subunits individually leads to effective K

values of 2−1, 2−4, 2−7, 2−10, 2−13, 2−16, and 2−19, as indicated in Fig. 11.6. In
each case the quoted value of K is the second largest in the subunit because the
volume associated with the largest value of K is only 1/7 ≈ 0.143 < 0.15, and is
thus insufficient to “percolate.” The median (geometric mean) values of K in each
of these units are, however, 2−3, 2−6, 2−9, 2−12, 2−15, 2−18, and 2−21, each a factor
22 smaller than the effective K value. If continuum percolation is again applied to
the seven units with the above seven K values, the effective K value for the en-
tire medium is 10−4, again the second largest of seven values. Further, if continuum
percolation theory is applied to the composite distribution of all 49 subunits simulta-
neously, the effective K value obtained for the entire medium is also 2−4, provided
that the same value, 0.15, is used for Vc. The median, or geometric mean value of
the geometric means of the subunits is 2−12, which is too small by a factor of 28.
Clearly the value of Vc in the latter case may not be quite 0.15. On the other hand,
the coarse-graining procedure is also slightly inaccurate. Nevertheless each of these
uncertainties is small compared to the error incurred by assuming that the upscaled
value of K is closely related to the geometric mean value of K . Further, relating
the effective K to the geometric mean value tends to produce an underestimation of
K , which grows with increasing scales. The point of this exercise, however, is that
the existence of multiple scales of heterogeneity does not lead to an increase in an
effective K value with increasing scale, even though certain quantities often taken
as predictors of the effective K value do increase with increasing scale.

To make this exercise a little more quantitative we make a specific comparison
of the predicted upscaled values of K with the Matheron [16] conjecture, often re-
garded as a standard means of upscaling K . It was derived specifically for Gaussian
random fields in 1 and 2 dimensions, and has been generalized to 3 dimensions, al-
though it has been proved that it cannot be general in 3D. In any case the Matheron
conjecture is expressed as follows,

Keff = Kg exp

[

σ 2
(

1

2
− 1

d

)]

(12.8)

In this expression Kg is the geometric mean, d is the dimensionality of the medium,
and σ 2 is the variance of the (log) conductivity distribution. Note that for d = 2 the
Matheron result yields Keff = Kg, which itself cannot be general as already seen
in Chap. 2, as the effective conductivity depends very sensitively on the local con-
nectivity. One can calculate the variance of the conductivity distributions given here
very easily and then compare the results of an “enhancement factor,” Keff/Kg for
both the Matheron conjecture and continuum percolation. This comparison is given
in Table 12.1. This calculation for the Matheron conjecture is not strictly valid, of
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Table 12.1 Factors representing enhancement of K relative to geometric mean value. Percolation
values are calculated using assumed Vc of 0.15. Values in parentheses calculated from Vc = 0.06.
Subunit scale is upscaled from the subunit values. Unit scale is upscaled from the unit values.
Composite means the entire distribution. Product is the product of the enhancements at the subunit
and the unit scales

Method Subunit scale Unit scale Composite Product

Percolation 22 (23) 26 (29) 28 (211) 28 (212)

Stochastic 20.53 27 26.8 27.53

course, since the distributions chosen were log-uniform rather than log-normal. The
result is that the Matheron conjecture also tends to underestimate the value of Keff,
especially in media with multiple scales of heterogeneity. Furthermore, these under-
estimations already become noticeable in the case of Vc = 0.15. As has been seen,
however, at the pore scale Vc can be much smaller than 0.15, and this is likely the
case in some geological problems as well, though for some, Vc may also be larger
than 0.15. In fact, the point of a small, but growing body of literature is to answer the
question of why critical site percolation probabilities are so low in geologic media
(most of these works, e.g., [21, 25, 27], divide the medium up into blocks of uniform
size and look to correlations in the block conductivities to explain critical percola-
tion probabilities much lower than 0.3116 for a cubic lattice, rather than comparing
such probabilities with continuum values, starting from Scher and Zallen [24]). For
Vc = 0.06, the Matheron conjecture underestimates the hydraulic conductivity by
more than four orders of 2, or more than two-thirds the width of an individual sub-
unit distribution.

Note that the value of K at any scale is contained within the distribution of K

values at all smaller scales. However, especially for Vc very small, it may be lo-
cated well into the tail of the distribution. Under such circumstances (if Vc = 0.05)
limitations in sampling (significantly less than 20 = 1/0.05 samples) might suggest
that the value of K at a larger scale was not represented at all at the smaller scale.
So the general implications of continuum percolation theory are that inference of a
increase in K with increasing scale may be due to inadequate sampling (in the case
of very small Vc) as well as inappropriate inferences due to established methods of
inferring Keff.

Figure 12.7 gives a schematic representation of the predicted dependence of mea-
sured values of K as a function of scale. This representation is schematic because
the representation in terms of system size does not follow automatically from the
representation in terms of hierarchical rank (Fig. 12.6). Figure 12.8, from McPher-
son [17], gives actual K measurements as a function of scale. Note the general
similarity.

12.4 A More Realistic Hierarchical Problem

This subsection combines pore scale modeling with geologic scale modeling. In
particular, results of pore scale predictions are then used as inputs into geologic
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Fig. 12.7 For the system of
Fig. 12.6 the distribution of
K values as a function of
linear scale

scale predictions. The results have practical relevance [12] and turned out to be
accurate.

Flow in the subsurface at the U.S. Department of Energy Hanford site under
unsaturated conditions shows evidence of anisotropy [31, 33, 34]. This anisotropy
is expressed in the predominantly horizontal transport of moisture. Underlying the
anisotropic character of the flow is its dependence on anisotropic sedimentary struc-
tures on many spatial scales [14, 15]. Any anisotropy in the flow can be logically
assumed to lead to anisotropic spreading of contaminants, which appears to have
been observed in the case of Technetium [5].

43Tc99 is spreading mostly laterally through the U.S. Department of Energy Han-
ford site sediments. An important question to try to answer is: over what length scale
can the transport remain horizontal before the 43Tc99 is likely to be transported ver-

Fig. 12.8 Effect of scale on permeability of rocks in 3 different sedimentary basins in the United
States including the Uinta Basin of Utah [32], the Powder River Basin, Wyoming, and the Pierre
shale in South Dakota [4]. Dashed line at 10−14 m2 indicates average crustal permeability inferred
by Brace [3]. Error bars associated with Uinta Basin data reflect the full range of permeability
evaluated at each scale (reprinted by permission from [17])
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tically to the water table. In a medium with sufficient randomness to be treated with
the framework of percolation theory, even if anisotropy exists, it must be possible
mathematically to transform the medium so as to make it isotropic. In that case, per-
colation in the vertical and horizontal dimensions must coexist. Practically speaking
this means that at some large enough length scale, vertical flow must be as easy as
horizontal flow and the Technetium will be transported vertically to the water table.
Of course there are many potential vertical transport paths, which might not be treat-
able in percolation theory, such as vertical conduits known as clastic dikes [29]. If
the Technetium transport is controlled by such features (because it occurs at smaller
horizontal length scales than what we would predict), our proposed procedure will
not be relevant.

An area of the U.S. Department of Energy Hanford called the Vadose Zone Trans-
port Field Study (VZTFS) [30] was selected for study based partly on its earlier
study by Sisson and Lu [28], and partly on its potential relevance to the subsur-
face of the BC Crib area, where the cited Technetium discharge was located. The
sediments in the vicinity of the VZTFS consist principally of sand with interstitial
silt and silt beds [14, 15]. The hydraulic conductivity is a strongly varying func-
tion of moisture content, as we have seen. The Hanford subsurface, located in a
semi-arid region, typically has fairly high tensions, h. Thus, at higher tensions in
the unsaturated zone, the hydraulic conductivity may be strongly anisotropic as a
consequence of the tendency of finer soils to retain more water than coarser ones,
and for these soils to have been deposited primarily in horizontal structures. This
apparent anisotropy may have some important consequences for the Tc transport.

We proposed Hunt and Skinner [12] the following procedure to address this ques-
tion:

(1) Use critical path analysis from percolation theory [1, 20] to predict the un-
saturated hydraulic conductivity [2, 11] at the sample scale using soil physical in-
formation [23] from relevant soils at the U.S. Department of Energy Hanford site,
(2) Find the relevant parameters regarding the statistical occurrence and physical ex-
tent of such soils [23, 29], (3) Use critical path analysis again together with clusters
statistics of percolation theory to predict the distribution of hydraulic conductivity,
K , values at geologic scales and with geologic complications such as anisotropy
[9, 10], (4) Use sample scale information to generate the appropriate input parame-
ters for the geologic scale treatment, (5) Use the predicted K distribution at geologic
scales to estimate the risk involved in a particular solute spill.

Since all the theoretical work is already described in this book, the present dis-
cussion can be restricted to finding the necessary input parameters to develop the
appropriate output for analysis.

One important input that should be mentioned is that of a quasi-equilibrium as-
sumption; namely that the tension h is constant at a given elevation across soils of
different type.

We hypothesized that one could find a distribution of hydraulic conductivity val-
ues at a given tension and force that distribution of conductivity values into the form
of the Rieu and Sposito [22] distribution.

Specifically we used Eq. (10.7) and Eq. (10.8) to predict the distribution of ver-
tical K values (referenced to the typical horizontal hydraulic conductivity) that one
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Fig. 12.9 Predicted K(h = 100 cm) for 39 VZTFS soils (source [23]) as a function of fine content
percentage (silt + clay). Note that the relationship is very similar if plotted against silt content (not
shown). Note also that the R2 value is lower than if K(h = 100 cm/KS) is correlated with fine
content since the absolute K(h = 100 cm) depends on KS as well, and KS has a slight negative
correlation with fine content

would expect to find at a given spatial scale. These equations require several pa-
rameters as input, namely an effective porosity, and effective fractal dimensionality,
a ratio of a maximum to minimum K , and a relevant length scale. The first three
parameters are, as noted previously, not independent as formulated in the Rieu and
Sposito model. The next paragraphs will explain how we estimated appropriate pa-
rameters, and then we will present the results.

Schaap et al. [23] give particle size data, water retention curves, and the saturated
hydraulic conductivity for 53 of 60 soils investigated at the VZTFS site. We took
our methods from Chap. 6 [2] to predict the hydraulic conductivity as a function of
tension for 39 of these soils. The soils discarded were eliminated due to data prob-
lems (cumulative mass fractions with negative slopes, missing saturated values of
the hydraulic conductivity, etc.). The reader will note that the following discussion
is very practically based, partly because we force data to be compatible with a given
subsurface model. Yet we know that the universal aspects of percolation theory tend
to make most model characteristics nearly irrelevant, except for the magnitudes of
some of the parameters.

We predicted K(θ) in terms of KS using the particle size data as a proxy for the
pore size data. We matched predicted and observed water retention curves in order
to extract hA, the air entry pressure, and then used the predicted θ(h) curve together
with the predicted K(θ) and the observed KS in order to generate K as a function of
h without any unknown parameters. We then used summaries of the data to generate
our distributions of K values. In fact, we used parameters from these data in order
to generate parameters for the K distributions.

Specifically, we produced regressions of K(h) on total silt + clay content for
each of three values of h (50 cm, 100 cm, and 200 cm, the latter two in Figs. 12.9
and 12.10). We used the regression equation to generate typical values of K for
relatively fine-rich, Kloam, and fine-poor, Ksand, soils (at two specific values of fine
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Fig. 12.10 Predicted K

(h = 200 cm) for 39 VZTFS
soils (source [23]) as a
function of fine content
percentage (silt + clay)

content, 7.6 % and 20.1 %). These two values were identified by taking (arbitrarily)
half the maximum fine content (26.8 %) as the value (13.4 %), which distinguishes
between fine-rich and fine-poor soils, and then taking the average values of fine con-
tent in each range separately. When fine-rich soils had appreciably higher K than
fine-poor soils (at h = 100 and h = 200 cm) we used the ratio Kloam/Ksand in each
case to represent the square of the ratio of largest to smallest pore size in the Rieu
and Sposito model. The results were Kloam/Ksand = 54,800 at h = 200 cm, and
Kloam/Ksand = 25.8 at h = 100 cm. Clearly the anisotropy at h = 100 cm was too
small to be relevant. While h = 200 cm is too large a tension to be relevant in the
field (Rockhold, personal communication, 2008), we also know [11] that the pro-
cedures associated with laboratory measurements tend to produce hA values about
twice what is usually found in the field. This means that, in fact, the anisotropy that
we found for h = 200 cm should be relevant for field conditions with h = 100 cm.
Then we took the fraction of the fine-rich soils as an analogue to the porosity, com-
pleting the analogy. In our case 14 out of 39 of these soils had fine content greater
than 13.4 %, so we had an effective porosity of 14/39. We then used the relation-
ship φ = 1 − (r0/rm)3−D to find the effective fractal dimensionality, D. From this
we could use Eqs. (10.7) and (10.8) to produce the final two Figs. 12.11 and 12.12.
Note that there is a volume scale in this figure, and that volume scale is relevant.
Nevertheless, the amount of work needed to fix that scale using semi-variograms
for the hydraulic conductivity (given in [29]) is too great to reproduce here. How-
ever, there were at least three distinct spatial scales present in those variograms. We
related the smallest scale to the support volume, rather than to relevant structures
in the subsurface. When we chose the intermediate volume scale of ca. 40 m3 (as
potentially most suitable to a compound upscaling based on pore-scale results) we
generated a prediction [12] that when the Tc plume spreads to about 10,000 m3,
we should expect vertical transport to become about a factor 10−1/2 ≈ 1/3 as rapid
as horizontal transport. The horizontal scale that we deduced from this was about
70 m. This value appears to be two orders of magnitude too small when compared
with field data [5] which appear to show nearly 10 km of predominantly horizontal
migration. However, we have subsequently learned (J. Zachara and C. Liu, personal
communication, 2011) that the appropriate scale for relevance of vertical transport
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Fig. 12.11 Predicted distribution of Kv values as a function of plume volume for the case that
typical conditions favor h = 100 cm. In this case D = 2.72 and R = 5.08. Note that the expected
Kv/Kh is ca. 1/5 at a volume of about 43 m3 = 6 m × 6 m × 1.2 m, whereas the expected ratio
is ca. 1/3 at a volume of about 1,000 m3. Both of these values would be too small to account for
significant anisotropy in spreading

is approximately 100 m, and the discrepancy with our purely theoretical predictions
[12] was merely 30 %.

Problems

12.1 Repeat the calculations of K for nested heterogeneity that led to the entries of
Table 12.1, but using a critical volume fraction of 0.10.

12.2 Allow K to follow a log-uniform distribution with a prescribed width equal
to that of the example in Sect. 12.3, and discretize the distribution as in the
procedure there. Find the upscaled K as a function of an arbitrary critical
volume fraction. Find the value of the critical volume fraction which yields
the Matheron conjecture (Eq. (2.30)). How does this critical volume fraction
compare with the typical value of about 0.16 quoted in the literature? Is it
possible for the Matheron conjecture to be accurate for all values of the width
parameter using the same critical volume fraction?

12.3 Consider Problem 12.2 again, but allow nested heterogeneity analogously to
the procedure of this chapter. Thus the critical volume fraction is, to a good
approximation, independent of scale. Investigate the performance of the Math-
eron conjecture for the upscaling at both scales; does choice of the critical
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Fig. 12.12 Predicted distribution of Kv values as a function of plume volume for the case that
typical conditions favor h = 200 cm. In this case D = 2.918 and R = 234. Note that the ex-
pected Kv/Kh is ca. 1/200 at a volume of about 43 m3 = 6 m × 6 m × 1.2 m, whereas the ex-
pected ratio is ca. 1/2 at a volume of about 10,000 m3. At volumes 10,000 m3 it is thus relatively
common to find Kv values as high as 1/2 the expected Kh. This implies that a plume spreading
through individual soil units of volume 43 m3 (and length 6 m) can spread to a distance of roughly
(10,000/43)1/26 m ≈ 100 m in length before it is likely to begin spreading vertically

volume fraction of Problem 12.2, which guarantees equivalence to the Math-
eron conjecture at the lowest length scale, also guarantee equivalence to the
Matheron conjecture at the next higher length scale?

References

1. Ambegaokar, V.N., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems.
Phys. Rev. B 4, 2612–2621 (1971)

2. Blank, L.A., Hunt, A.G., Skinner, T.E.: A numerical procedure to calculate hydraulic conduc-
tivity for an arbitrary pore size distribution. Vadose Zone J. 7, 461–472 (2008)

3. Brace, W.F.: Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci.
17, 242–251 (1980)

4. Bredehoeft, J.D.: Groundwater—a review. Rev. Geophys. 21, 760765 (1983)
5. Cole, C.R., Wurstner, S.K., Bergeron, M.P., Williams, M.D., Thorne, P.D.: Three-dimensional

analysis of future groundwater flow conditions and contaminant plume transport in the Han-
ford site unconfined aquifer system. FY 1996 and 1997 status report, PNNL 11801, Pacific
Northwest National Laboratory, Richland, WA 99352 (1997)

6. Hunt, A.G.: Applications of percolation theory to porous media with distributed local conduc-
tances. Adv. Water Resour. 24(3,4), 279–307 (2001)



References 427

7. Hunt, A.G.: Some comments on the scale dependence of the hydraulic conductivity in the
presence of nested heterogeneity. Adv. Water Resour. 26, 71–77 (2003)

8. Hunt, A.G.: An explicit derivation of an exponential dependence of the hydraulic conductivity
on saturation. Adv. Water Resour. 27, 197–201 (2004)

9. Hunt, A.G.: Scale-dependent dimensionality cross-over; implications for scale-dependent
hydraulic conductivity in anisotropic porous media. Hydrogeol. J. (2005). doi:10.1007/
s10040-005-0453-6

10. Hunt, A.G., Blank, L.A., Skinner, T.E.: Distributions of the hydraulic conductivity for single-
scale anisotropy. Philos. Mag. 86, 2407–2428 (2006)

11. Hunt, A.G., Gee, G.W.: Application of critical path analysis to fractal porous media: compar-
ison with examples from the Hanford site. Adv. Water Resour. 25, 129–146 (2002)

12. Hunt, A.G., Skinner, T.E.: A proposed analysis of saturation-dependent anisotropy for U.S.
DOE Hanford site soils. Hydrogeol. J. (2009). doi:10.1007/s10040-009-0499-y

13. Khaleel, R., Relyea, J.F.: Variability of Gardner’s alpha for coarse-textured sediments. Water
Resour. Res. 37, 1567–1575 (2001)

14. Last, G.V., Caldwell, T.G.: Core sampling in support of the vadose zone transport field study.
PNNL-13454, Pacific Northwest National Laboratory, Richland, WA 99352 (2001)

15. Last, G.V., Caldwell, T.G., Owen, A.T.: Sampling of boreholesWL-3A through -12 in support
of the vadose zone transport field study. PNNL-13631, Pacific Northwest National Laboratory,
Richland, WA 99352 (2001)

16. Matheron, G.: Elements Pour Une Theorie des Milieux Poreux. Masson et Cie, Paris (1967)
17. McPherson, B.J., the EarthLab Steering Committee: EarthLab: A Subterranean Laboratory

and Observatory to Study Microbial Life, Fluid Flow, and Rock Deformation. Geosciences
Professional Services, Inc., 60 pp. (2003)

18. Nielsen, D.R.: Spatial variability of field-measured soil-water properties. Hilgardia 42, 215–
259 (1973)

19. Nimmo, J.R.: Modeling structural influences on soil water retention. Soil Sci. Soc. Am. J. 61,
712–719 (1997)

20. Pollak, M.: A percolation treatment of dc hopping conduction. J. Non-Cryst. Solids 11, 1–24
(1972). doi:10.1016/0022-3093(72)90304-3

21. Proce, C.J., Ritzi, R.W., Dominic, D.F., Dai, Z.X.: Modeling multiscale heterogeneity and
aquifer interconnectivity. Ground Water 42, 658–670 (2004)

22. Rieu, M., Sposito, G.: Fractal fragmentation, soil porosity, and soil water properties I. Theory.
Soil Sci. Soc. Am. J. 55, 1231 (1991)

23. Schaap, M.G., Shouse, P.J., Meyer, P.D.: Laboratory measurements of the unsaturated hy-
draulic properties at the vadose zone transport field study site. PNNL Report, 14284, Pacific
Northwest National Laboratory, Richland, WA 99352 (2003)

24. Scher, H., Zallen, R.: Critical density in percolation processes. J. Chem. Phys. 53, 3759 (1970)
25. Shah, C.B., Yortsos, Y.C.: The permeability of strongly disordered systems. Phys. Fluids 8,

280–282 (1996)
26. Sharma, M.L.: Influence of soil structure on water retention, water movement, and thermo-

dynamic properties of absorbed wate. Ph.D. Thesis, Univ. Hawaii, 190 pp. Univ. Microfilms,
Ann Arbor, Mich. (1966) [Diss. Abst. 28 17600B (1966)]

27. Silliman, S.E.: The influence of grid discretization on the percolation probability within dis-
crete random fields. J. Hydrol. 113, 177–191 (1990)

28. Sisson, J.B., Lu, A.H.: Field calibration of computer models for application to buried liq-
uid discharges: A status report. RHO-ST-46 P. Rockwell Hanford Operations, Richland, WA
99352 (1984)

29. Ward, A.L.: Vadose zone transport field study: Summary report. PNNL Report 15443, Pacific
Northwest National Laboratory, Richland, WA 99352 (2006)

30. Ward, A.L., Caldwell, T.G., Gee, G.W.: Vadose Zone Transport field study: soil water con-
tent distributions by neutron moderation. PNNL Report 13795, Pacific Northwest National
Laboratory, Richland, WA 99352 (2000)

http://dx.doi.org/10.1007/s10040-005-0453-6
http://dx.doi.org/10.1007/s10040-005-0453-6
http://dx.doi.org/10.1007/s10040-009-0499-y
http://dx.doi.org/10.1016/0022-3093(72)90304-3


428 12 Effects of Multi-scale Heterogeneity

31. Ward, A.L., Zhang, Z.G., Gee, G.W.: Upscaling unsaturated hydraulic parameters for flow
through heterogeneous anisotropic sediments. Adv. Water Resour. 29, 268–280 (2006)

32. Willett, S.D., Chapman, D.S.: Temperatures, fluid flow and the thermal history of the Uinta
Basin. In: Collection Colloques et Seminaires—Institut Francais du Petrole, vol. 45. Technip,
Paris (1987)

33. Ye, M., Khaleel, R., Yeh, T.-C.: Stochastic analysis of moisture plume dynamics of a field
injection experiment. Water Resources Research 41 (2005). doi:10.1029/2004WR003735

34. Yeh, T.-C., Ye, M., Khaleel, R.: Estimation of effective unsaturated hydraulic conductivity ten-
sor using spatial moments of observed moisture plume. Water Resources Research 41 (2005).
doi:10.1029/2004WR003736

http://dx.doi.org/10.1029/2004WR003735
http://dx.doi.org/10.1029/2004WR003736


Chapter 13
Misconceptions

Looking over the research presented in this book, we realize that some in the porous
media community will find its implications difficult to accept. Two challenging im-
plications stand out: (1) many concepts that are believed to be understood are ac-
tually erroneous, and are hindering progress, and (2) the feeling that some issues
are unfathomably complex has caused many to retreat to application-specific empir-
ical models, rather than seeing and addressing the underlying complexity. But our
research, with over 9000 comparisons of theory and measurement detailed in this
book, shows that some established concepts should be replaced, and that complex-
ity can be addressed. In that light, here we summarize some misconceptions that
we believe are retarding progress in studies of porous media. A few of these have
recently been published [2], but this broader summary is new.

It should have been recognized long ago that saturation-dependent properties
should be analyzed in terms of percolation theory. The relevant literature traces back
to the 1970s, so we have had an unnecessary half-century of persistent confusion and
wasted opportunity. The difficulties that arise because percolation theory is ignored
in this context are too numerous to count, but some resulting misconceptions are
enumerated below. Percolation theory provides a coherent conceptual framework
within which many ostensibly disparate processes are seen to have underlying com-
monalities. The history of science shows the power of unifying concepts to explain,
to suggest and guide investigations, and to focus attention on underlying rather than
peripheral (or worse, artifactual) issues.

Because percolation theory incorporates scale-dependence considerations, ignor-
ing percolation theory has resulted in a misunderstanding of the nature of parame-
ters. The continuum partial differential equations upon which much research into
porous media is based contain parameters whose scale-dependence is not recog-
nized. Their values cannot be calculated within the framework in which they are
grounded. Consequently one needs to develop separate “upscaling” approaches for
determining what values of a coefficient should be used at a given spatial scale.
But the emphasis on the partial differential equations—while ignoring the scale-
dependent aspects of their coefficients—betrays a serious lack of understanding
of the very processes being modeled. Likewise, the emphasis on measuring the
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coefficients—while ignoring their scale-dependence—leads to research into correc-
tions built on top of misconceptions.

One does not require coefficients (which have an unknown scale dependence) in
a partial differential equation, if one is not using a differential equation in the first
place. If these coefficients can best be found by using network models and percola-
tion theory, then perhaps one should skip the confusing step of the continuum model
and use a network or percolation model at all scales. However, the continuum ap-
proach is needed in order to get the physics right at the scale of a single pore scale. In
some applications, the continuum approach can be extended upward to perhaps ten
or even one hundred pores on a side, depending on the equation. Above that scale, a
scale-aware approach is required. So (for example) the Advection-Dispersion Equa-
tion (ADE) should never be applied above the scale of a single pore. In the case
of the Navier-Stokes equations and their lattice Boltzmann equivalent, it is more a
question of practicality: for how large a medium is it still possible to generate the
appropriate phase boundary conditions?

13.1 Some Misconceptions at the Pore Scale

1. The water retention curve (WRC) provides a mathematical transformation of the
pore-size distribution.

This simple transformation implies a medium with the topology of the capil-
lary bundle model. As Wilkinson [6] stated almost 30 years ago, when a porous
medium wets (saturation changes from 0 to 1), two percolation transitions are en-
countered. The first is when the wetting phase percolates; the second is when the
non-wetting phase ceases to percolate. Such transitions have profound effects on
the pressure-saturation curves, including hysteresis, non-equilibrium behavior, and
saturation-dependent finite-size effects. The difficulties extend beyond interpreta-
tion of experiments. Each percolation transition is associated with a diverging length
scale; if simulations are performed across these transitions, but the results are not
analyzed in terms of finite-size scaling, the conclusions will not be reliable. Since
the shape of the WRC is affected by phase continuity for each transition, and is par-
ticularly affected by finite-size issues, inferring the pore-size distribution from the
WRC cannot be valid without addressing complications best handled by percolation
theory.

2. The effects of tortuosity and connectivity on hydraulic conductivity and other
properties are not known, justifying use of a phenomenology with adjustable
exponent values.

We have shown by detailed analysis that the universal scaling from percolation
theory describes (at least) the saturation dependence of electrical conductivity, air
permeability, solute and gas-phase diffusion, and the dry end of unsaturated hy-
draulic conductivity. We have also demonstrated that simulations and experiments
evaluating tortuosity are well described by percolation theory. Because the form and
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behavior of these properties is known, accounting for them with empirical or ad hoc
corrections has no scientific validity.

3. Two-dimensional models provide a reasonable description of three-dimensional
problems.

It is a fundamental rule of topology that in two dimensions it is impossible for two
phases to percolate simultaneously. Consequently, a 2D grain-supported medium
cannot support flow. So at the pore-scale, one cannot simultaneously model me-
chanical and flow properties in 2D. Likewise, in 2D the wetting and non-wetting
(e.g., air and water) phases cannot flow simultaneously. Water films around parti-
cles would not interconnect, and wetting or drying the medium would produce only
one fluid phase transition (or zero if the medium were grain-supported!): the non-
wetting phase would cease to percolate at precisely the same saturation at which
the wetting phase began to percolate. The problem is fundamentally different in 3D,
where continuity of solid and two fluid phases is possible.

4. Hysteresis in the WRC can be understood by formulating the problem in terms
of the water-air interfacial area, for which the equivalent to the WRC becomes
single-valued.

Because one can predict hysteresis by appealing to accessibility and its formula-
tion in percolation theory, hysteresis is already understood. A formal solution was
available as early as the early 1980s, and we need not cast about for new solutions.
Moreover, percolation considerations suggest that formulating the issue in terms of
interfacial area cannot be correct: if a portion of the air infinite cluster loses its con-
nection to the infinite cluster, the interfacial area is little changed, but the system’s
ability to increase its water content is diminished.

13.2 Some Misconceptions at the Geological Scale

1. The scale-dependence of dispersivity is based in the evolving nature of the
medium with increasing scale.

The justification for this has been that the ADE cannot yield the observed ex-
perimental trends without such an input. However, we find that a medium with
a monomodal distribution of local conductances and a single length scale of het-
erogeneity, treated using basic concepts from critical path analysis and percolation
scaling, generates the observed scale-dependent dispersivity over 10 orders of mag-
nitude of length scale. Of course one must choose a different fundamental (input)
length scale for micromodel experiments than for field work, but the predicted lin-
ear dependence of dispersivity on length scale (in agreement with the Gelhar et
al. [1] rule of thumb) was in agreement with experiment over the entire range of
experiments investigated. This indicates that attributing this result to multi-scale
heterogeneity is a consequence of applying the wrong mathematical model.
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2. Hydraulic conductivity (K) should increase with increasing scale because (a)
the connectivity increases with increasing scale, and (b) the largest possible pore
(or fracture) size increases with increasing scale.

This assertion is supported by appealing to results of calculations of the (usually
arithmetic) mean value of the hydraulic conductivity, which are scale-dependent.
The upscaled hydraulic conductivity does not relate to the mean value at any smaller
scale. Any physical connections that exist at large scales cannot be absent at small
scales: they had to pass through the system somewhere! This can be understood
most easily in an isotropic medium. However, it is possible to develop such a “scale
effect” on K in anisotropic media. Using a transformation in coordinate axes sug-
gested by Tartakovsky and Neuman [5], we showed that the increase in K was a
shape effect. (It would also arise in an isotropic medium, but only in the case that
the experimental volume was elongated in just one direction. Then if the experi-
mental volume were increased proportionally in all three dimensions, flow would
change from one-dimensional to three-dimensional, matching experiment.) As for
the argument regarding the relevance of increasing fracture size, it seems clear that
the large fractures are in the small systems somewhere too, but they are neglected
or underrepresented.

3. The increase in dispersivity with increasing scale is connected with an increase
in hydraulic conductivity with increasing scale.

See our previous conclusion, that the hydraulic conductivity does not increase
with increasing scale. In fact, in isotropic systems, K diminishes with increasing
length scales, and so does the solute velocity. The reduction in solute velocity with
increasing scale is intimately connected with the increase in dispersivity with in-
creasing scale.

4. Long tails in arrival time distributions in fracture flow experiments are due to re-
tardation from diffusive exchange with the rock matrix, because the ADE predicts
Gaussian dispersion.

This is an example of basing conclusions on the (inevitable) failures of an in-
appropriate mathematical tool, in this case the ADE. If one considers fractures to
support flow through a disordered 2D medium, then the method of Chap. 11 gener-
ates the appropriate long-time tails of the arrival time distribution.

13.3 Summary

Forty years ago, percolation theory was an obscure intersection of math and con-
densed matter physics, with an as-yet unrecognized application in porous media.

Twenty years ago, two of us (AGH and RPE) were independently interested in
applying percolation theory to porous media. At that time is was unclear (at least
to RPE!) that percolation theory could address the many issues involved. Since we
started to collaborate ten years ago, we have continually expanded the range of
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Fig. 13.1 Demonstration of the compatibility of air permeability and gas diffusion data. All data
of both processes discussed in Chap. 7 are plotted here. The normalization for gas diffusion was to
ε = 1, for the air permeability to ε = ϕ. For the gas diffusion we recognized, as in Fig. 2.1, that the
cross-over to linear behavior (at p = 0.8) outside the range of observed air-filled porosity values
required normalizing the gas diffusion constant to 1.28 times its actual value. Note that over 1000
individual experimental values are plotted on this graph with no selection criteria applied

Fig. 13.2 In this figure we
selected the first of the
Moldrup gas diffusion
databases [4] to compare with
the thermal conductivity [3].
The comparison would not
have been substantially
different with any of the other
databases. We used the
cross-over from the
percolation scaling function
to effective-medium scaling
at p = 0.8 as described in
Chap. 2

processes and properties that we ask the theory to handle. To date we have not
found an issue that could not be clarified by the use of percolation theory.

We offer two final figures (Figs. 13.1 and 13.2), showing that the simple univer-
sal scaling law (with appropriate normalization) successfully predicts multiple flow
processes. Figure 13.1 demonstrates that the gas diffusion and the air permeability
follow the same functional form. We simply took all the data for each, normalized
the gas diffusion to its value in air and the air permeability to its value under dry
conditions, and plotted them up simultaneously. Even before percolation theory was
developed, the electrical conductivity was known to be proportional to the solute
diffusion constant. In the 2nd edition of this book, when we had not referred to the
effective-medium approximation for the conductivity at high p values, we were not
very hopeful that the thermal conductivity could be so easily related to the other
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conductivities. However, we now see in Fig. 13.2 that the thermal conductivity, ex-
cept in a relatively narrow region of p values where the chief change of the medium
relates to the elimination of the contact resistance between particles, also fits on the
same universal theoretical curve. We should mention that the data of Moldrup et al.
[4] are unusually uniform in that each medium has a critical volume fraction near
0.05, which was the mean value of all the Moldrup data. The power of a single the-
ory to describe such apparently disparate processes should not be ignored. Rather,
such a unifying framework should guide further investigations into universal behav-
iors. We anticipate that the theory will help to identify secondary effects that are
real rather than artifacts, and to develop physically-based predictive capabilities in
the face of once-daunting complexity.

We hope that the tools we present in this book find wide application in soil
physics, hydrology, petroleum engineering, and the like. It is now unthinkable to
us to work on flow in porous media without using percolation theory. We hope that
a further twenty years is not required for that same “phase transition” to take place
in the broader porous media community.
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